F4 (mathématiques)

En mathématiques, F4 est un groupe de Lie exceptionnel de type complexe. Son algèbre de Lie est notée . F4 est de rang 4 et de dimension 52. Sa forme compacte est simplement connexe et son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 26.

24 Cell Polytopeb.svg

La forme compacte réelle de F4 est le groupe d'isométries d'une variété riemannienne de dimension 16, connu également sous le nom de plan projectif octonionique, OP2, ou plan de Cayley (en). Ceci peut être vu en utilisant la construction du carré magique (en), étudiée en détail par Hans Freudenthal et Jacques Tits.

Il existe trois formes réelles de ce groupe, une compacte, une déployée, et une troisième.

AlgèbreModifier

Diagramme de DynkinModifier

Racines de F4Modifier

 
 
 
 
 
 
 
 
 
 
 

Racines simples :

 
 
 
 

Matrice de CartanModifier

 

Lien externeModifier

(en) F4 sur le site The Octonions de John C. Baez, à l'UCLA