Discussion:Masque jetable

Autres discussions [liste]
  • Admissibilité
  • Neutralité
  • Droit d'auteur
  • Article de qualité
  • Bon article
  • Lumière sur
  • À faire
  • Archives
  • Commons
Ajouter une discussion

Manque d'explicationsModifier

Bonjour, si j'en crois l'exemple proposé avec Hello chaque lettre du message sera toujours "traduite" par la même lettre dans le message chiffré. (si ce n'est pas le cas il faudrait le préciser qqpart) Dans ce cas pourquoi cette méthode de chiffrement résisterait elle à l'analyse statistique de texte comme c'est indiqué au début de l'article ?

Non, justement : chaque lettre a son code : la lettre correspondante de la clé. domsau2 (discuter) 28 mars 2014 à 09:39 (CET)[répondre]

ReformulationModifier

L'ancienne formulation « est en théorie le seul qui soit impossible à casser. » donne l'impression que l'on a prouvé qu'il n'y a aucune autre manière de faire, alors que ça semble plutôt être cette manière-ci est incassable, mais il se pourrait qu'il y en ait d'autres toutes aussi incassables. ✒ Répondre à David Latapie 19 novembre 2005 à 21:56 (CET)[répondre]

donc , on a dit que la clé de cryptage doit avoir le même longeur que le message à crypter .

donc comment crypter ce message avec cette clé :

message : Caligula clé : ulag

fadex.linux (at) gmail.com

merci d'avance

tu ne peux pas, pas par le principe du masque jetable dans ce cas. Une variante consisterait à dupliquer ta clé mais dans ce cas, elle n'est plus complètement aléatoire et les propriétés du masque jetable ne tiennent plus. Dake* 31 janvier 2006 à 17:40 (CET)[répondre]
ou bien tu "dérives" ta clef afin d'obtenir une valeur plus longue, e.g. en utilisant le hash SHA1 de ta clef.
Le SHA1 n'est pas aléatoire. domsau2 (discuter) 20 mars 2014 à 14:16 (CET)[répondre]

RectificationModifier

Le 26 août 2007, l'anonyme 85.0.238.249 a ajouté un complément qui n'est pas en accord avec la théorie. Je le supprime donc. HLenormand

Chiffre de VigenèreModifier

Cette méthode n'est-elle pas un cas particulier du Chiffre de Vigenère, et si tel est le cas, un lien ne devrait-il pas être ajouté ? Il me semble que seul la longueur de la clef les distingue M LA (d) 2 avril 2008 à 22:17 (CEST)[répondre]

Le Chiffre de Vigenère est un algorithme de cryptage, rien de tel ici : l'usage du Xor n'est qu'un moyen pour méler un texte en clair avec un texte (la clef) aussi long que le message et pas un algorithme de cryptage, ... mais la solidité du procédé repose sur le caractère aléatoire de la clef. Cet aléas peut être obtenu par un processus pseudo aléatoire (algorithme déterministe), mais s'il est véritablement aléatoire (nécessite des inputs physiques), son mélange (par Xor) avec le message en clair donne aussi un message véritablement aléatoire et via incassable. --Epsilon0 ε0 2 avril 2008 à 23:30 (CEST)[répondre]
Le chiffre de Vigenère peut aussi utiliser une clef de même longueur que le message et cette clef peut aussi être aléatoire. La méthode de "mélange" clef-message est différente : xor pour le masque jetable, addition modulo 26 de chr§(msg(i)-chr§("A") et chr§(clef(i))-chr§("A") pour le chiffre de Vigénere. L'offset de chr§(A) et Le modulo 26 ne sont pas présents dans le concept du chiffre de Vigénere; il reflète un adaptation au cryptage des 26 lettres uniquement (par de chiffre ne de caractères spéciaux) et ceux-ci étant codé en ASCII (ou dans un qui représente les lettres de manière contiguë). Je continue à croire qu'il s'agit ici de deux codes très procheS dans leur principe. Le chiffre de Vigenère me semble être le premier qui utilise une clef longue (le chiffre de César utilise une clef d'une seule lettre). Si c'est bien, comme je le pense, l'ancêtre de la méthode du masque jetable cette filiation devrait être mentionnée. M LA (d) 3 avril 2008 à 09:07 (CEST)[répondre]
Une chose est sûre c'est que Vigenère est un (l') ancêtre de codage par clef ... mais pas plus du code Vernam (ie masque jetable) que d'un autre. A noter que pour la quasi totalité des codes la clef peut avoir la longueur du texte. Pour moi, masque jetable = clef de même longueur que le texte + aléatoire et ... Xor est totalement inessentiel dans l'histoire (on peut prendre le connecteur qu'est l'équivalence ou des trucs plus "compliqués" comme Vigenère). Sinon sur le fond ... rien n'interdit dans un article d'en mentionner d'autres, tout dépend de la manière dont on fait la liaison ;-). --Epsilon0 ε0 3 avril 2008 à 22:36 (CEST)[répondre]
Alors je vais le mettre dans un paragraphe "Autres codages par clef". Sinon, on pourrait peut-être créer des catégorie par famille de codage : transposition, substitution, substitution par clef, etc ... A une prochaine fois M LA (d) 3 avril 2008 à 22:55 (CEST)[répondre]
Ok, mais sinon pour les grandes manoeuvres, il vaut mieux voir avec le Projet:Cryptologie car il y a déjà bcp de choses. A+ --Epsilon0 ε0 3 avril 2008 à 23:16 (CEST)[répondre]

Erreur dans l'exempleModifier

Salut !,

Je me suis permis de modifier l'exemple pour cet article, en effet, il y a avait une erreur : C (3) au lieu de (2) ce qui changeait le résultat (O au lieu de N), de même j'ai corrigé le déchiffrage.

A+

section "mode d'emploi"Modifier

Je suis très dubitatif avec la section "mode d'emploi" nouvellement insérée par Domsau2 (d · c · b) que je songe à supprimer mais je préfère requérir d'autres avis avant.

1. bon déjà une section du type "how to" relève de wikibook et non de wikipédia.

2. mais hors de cet règle, l'adjonction dans l'article de personnages comme des "espions" partant en mission me semble plus relever d'un développement du genre roman policier que d'un article rigoureux d'une encyclopédie.

3. Aussi hors ces aspects historiques connus ce code me semble relever, avec le thm de Shannon à la clef , de la simple mathématique exposée par exemple dans suite aléatoire .

En clair ce qu'il y a à dire dans cet article en théorie est simplement : Code aléatoire au sens fort du terme + de même longueur que le message = code incassable et seul code cryptographique démontré tel. Le reste n'est qu'histoire (Guevara, tél rouge) et un exposé romancé sur son utilisation (qui n'est même pas spécifique à ce moyen cryptographique) n'a pas sa place.

Bon enfin, ayant dit cela (ma pensée ayant évoluée au fil de mon exposé) je supprime ce paragraphe et en cas d'objection cette section est ouverte pour vos avis. Cordialement, --Epsilon0 ε0 4 mars 2009 à 10:14 (CET)[répondre]

Bonjour. Je suis (sans surprise) opposé à la suppression du texte. Toutefois, l'argument de la nécessité de le formuler différemment est valable. Une formulation non romancée et/ou déplacée dans Wikibook ou Wikiversité conviendra donc mieux ? domsau2 (d) 5 mars 2009 à 02:04 (CET)[répondre]
Bonjour, expliquer les précautions à prendre lors de l'échange des clefs et de leurs utilisations peut sans doute être développer quelque part mais certainement pas dans cet article, simplement parce que ce n'est pas spécifique à cette méthode de cryptage et aussi parce que cela relève d'un mode d'emploi du genre wp:TI qui n'a en général pas sa place dans wikipédia (contrairement par exemple à un protocole strictement mathématique du genre clef privée - clef publique où le protocole d'utilisation est la part essentielle du procédé de cryptage).
Par contre cela a sans doute sa place dans wikibook ou wikiversité, où peuvent être développés des techniques d'utilisation ou des conseils, dans un but d'un "manuel du parfait crypteur sur le terrain" ou dans un but didactique. Néanmoins ne participant pas à ces 2 projets frères je ne puis m'avancer plus. Je ne sais pour exemple si une mise en situation de type "romancé" y a sa place ou non. A ma connaissance des exercices sont possibles sur wikiversité et souvent dans des exercices on contextualise le problème (genre exo de maths où des trains se croisent ou exercices où l'on joue à la marchande pour prendre des exemples caricaturaux), donc p.-e. que sur ces projets ce type de formulation est possible, voir avec eux.
En tout cas sur wikipédia un mode d'emploi aussi généraliste me semble guère adéquat (même sous forme de liste de recommandations "veuillez à ceci, veillez à cela, ...") et le serait-ce cela ne serait pas propre à ce présent article. Pour un avis plus général, la question peut être posée sur le projet:Cryptologie, mais je m'attends un peu à la réponse. Cordialement. --Epsilon0 ε0 5 mars 2009 à 22:02 (CET)[répondre]
[[1]]domsau2 (d) 9 mars 2009 à 17:03 (CET)[répondre]

à propos de Vigenère et Vernam (désolé je n'ai pas réussi à éditer proprement)Modifier

la base arithmétique du message et de la clé n'a aucune importance, on parle en base 26 parce que c'est pratique pour coder du texte, en base 2 parce que c'est celle dont se servent nos ordinateurs, mais la mécanique reste toujours la même.

La différence texte + clé modulo 26 pour l'un et xor pour l'autre n'en est pas une, car en base 2 : texte + clé modulo 2 C'EST texte XOR clé

(pas réussi à faire une table propre, mais tout le monde connait la table xor)

en résumé : le chiffre de Vernam C'EST le chiffre de Vigenère PLUS une clé aussi longue que le message, a usage unique (utiliser une clé deux fois, que ce soit au sein d'un même message ou pas c'est là qu'est la faille du chiffre de Vigenère), et aléatoire (pour la même raison que l'usage unique de la clé, ce sont les redondance qui ouvrent la porte d'une cryptanalyse de ce procédé). Et le XOR est une particularité de la base 2, pas de la méthode de codage.

Parfaitement d'accord, tant que l'opération choisie (XOR, Vigenère, ...) est réversible, la clef aléatoire et aussi longue que le message alors le principe du masque jetable est respecté.

à recyclerModifier

L'ensemble de l'article semble à reprendre, à partir d'une source solide (un manuel de crypto au départ) : détails dont la pertinence est douteuse (unicode, signature ...) ; affirmations fausses, un ordinateur, qui est aussi un dispositif physique, peut produire de l'alea (/dev/ramdom sur les systèmes unix), ou extrêmement douteuse "cette méthode a été et est encore largement utilisée par les États" ... Proz (d) 8 décembre 2011 à 23:18 (CET)[répondre]

Une coquille dans "Une fausse clé peut changer tout le message"Modifier

En parcourant ce wiki, j'ai aperçu ce qui me semble être une erreur.

"

   Vrai message secret à transmettre : "OUI"
   Vraie clé aléatoire secrète : "HRJ"
   Vrai message codé public = (Vraie clé aléatoire secrète + Vrai message secret à transmettre), modulo 26 : "WMS"
   Fausse clé, fabriquée par l'ennemi et inversée discrètement par l'ennemi = (Faux message décodé - Vrai message codé publique), modulo 26 : "QBU"
   Faux message décodé lu = (Vrai message codé publique - Fausse clé), modulo 26 : "NON"

"

Dans la partie en gras il faudrait plutôt inverser l'opération et mettre plutôt Vrai message codé publique - Faux message codé. En effet si on effectue le calcul (en utilisant les termes) à la ligne suivant on doit tomber sur "Faux message codé" ce qui n'est pas le cas. On tombe sur "Vrai message codé publique" + "Vrai message codé publique" + "Faux message codé".

Transmission des clés.Modifier

Bonjour. Je pense que le principal problème cité de "mise en œuvre" ("la transmission des clés" en particulier) n'en est pas vraiment un. Avec une astuce, on peut en effet les transmettre très simplement par voie numérique sans difficulté. Pas besoin de complication quantique ! Une seule clé suffit pour la conversation en allers-et-retours, deux pour une conversation fluide. Bien que la solution soit évidente (et je ne doute pas qu'elle soit appliquée, tellement elle est triviale, une fois qu'on y a pensé ! :D), j'ai peur l'explication soit refusée pour "travail personnel". En plus de l'ajout d'un "mode d'emploi", il faudrait changer toute la partie "difficultés de mise en œuvre" ! Que me conseillez-vous ? domsau2 (discuter) 28 mars 2014 à 09:54 (CET)[répondre]

Qui est l'auteur des critiques sur cet article  ?Modifier

HLenormand

En relisant cet article, auquel j'ai beaucoup contribué il y a quelques années, je suis fort surpris du bandeau qui lui a été ajouté en tête :

"Cet article ou cette section concernant les mathématiques doit être recyclé. Une réorganisation et une clarification du contenu est nécessaire. Discutez des points à améliorer en page de discussion."

Je ne doute pas qu'un article ne soit jamais parfait, il peut toujours être amélioré.

Mais ai-je le droit de savoir qui est l'auteur de ce bandeau fort critique, pour pouvoir engager une discussion avec cette personne ?

Les mathématiques utilisées dans l'article sont élémentaires et personne n'y a relevé d'erreur : En quoi faudrait-il recycler l'article sur ce point ?

Qu'est-ce qui est mal organisé dans le contenu ? Qu'est-ce qui n'est pas clair ?

HLenormand (discuter) 2 août 2014 à 20:03 (CEST)[répondre]

Le bandeau a été inséré par Proz (d · c · b) ([2]) et concerne surtout le manque de sources et certaines phrases pouvant être mises en doute. C'est dommage que, en même temps que le bandeau, les phrases mises en doute n'ont pas été soulignées par un refnec ou refsou. Je n'ai pas relu l'article attentivement, mais globalement et à première vue il me semble bien construit et clair. Je pense qu'il s'agit plus de critiques localisées que globales. Merci pour votre travail passé ! Cordialement --Jean-Christophe BENOIST (discuter) 3 août 2014 à 10:00 (CEST)[répondre]
La mention des mathématiques est une erreur de ma part, désolé. J'avais sinon justifié le bandeau dans une section ci-dessus au titre explicite Discussion:Masque_jetable#à_recycler. Il y a bien-sûr aussi des choses correctes, le principe est décrit correctement par exemple, mais elles sont mêlées à d'autres qui me semblent douteuses, d'où la pose du bandeau. Pour être plus direct je pense par exemple que les auteurs ont extrapolé de façon pas très judicieuse à partir de ce qu'ils savaient du chiffrement par flot ou plus généralement de leurs connaissances informatiques. Par exemple une mention peu opportune d'unicode ou même des tables ascii, la réalité a probablement été beaucoup plus proche d'une utilisation des 26 lettres de l'alphabet (qui est de toute façon très réaliste contrairement à ce qui est dit), mention de RSA qui n'a pas grand sens dans ce cadre... Je ne suis pas sûr qu'il y ait lieu de beaucoup discuter de la mise en oeuvre pratique sur informatique du chiffrement de Vernam : la question s'est elle réellement posée ? S'il y a lieu il faut une source. La partie sur les générateurs de nombres pseudo-aléatoires, passe à côté du sujet (graine aléatoire) et est erronée. En retirant ce qui me paraît très extrapolé, il reste effectivement quelque chose de correct. S'en tenir à ce que l'on dit dans les manuels de crypto (Stinson, Schneier, Menezes & al http://cacr.uwaterloo.ca/hac/about/chap1.pdf ...) sur le principe et la mise en oeuvre, permettrait de faire le tri. Les chiffrements par flot seraient à mentionner explicitement. Proz (discuter) 4 août 2014 à 01:36 (CEST)[répondre]
HLenormand

Je suis d'accord avec vous que dans son état actuel, l'article comporte des passages discutables. Ils ont été ajoutés au fil des années, et d'après les statistiques, 82 internautes sont intervenus depuis le départ... C'est le principe-même de Wikipedia que de permettre à n'importe qui d'ajouter ce qu'il veut dans un article. Mais j'avoue que je ne me sens pas le courage de mener sur cette page une longue discussion sur les points dont on peut douter, et dont les auteurs ne seront peut-être plus là pour répondre... HLenormand (discuter) 11 août 2014 à 16:54 (CEST)[répondre]

J'ai fait un peu de ménage dans le sens de ce que je proposais, et quelques reformulations assez (trop ?) rapidement. J'ai encore un gros doute sur la pertinence de la section "Une fausse clé peut changer tout le message" (lié à un problème d'authentification, d'ailleurs pas vraiment spécifique au masque jetable). Je retire le bandeau. Merci en tout cas pour le travail réalisé à l'époque et pour avoir réagi. Malgré tout il y a encore à faire pour en arriver aux standards actuels (sourçage précis en particulier). Malheureusement plus grand monde ne s'intéresse à la cryptologie sur wikipedia actuellement. Proz (discuter) 31 août 2014 à 22:59 (CEST)[répondre]

Avantages ?Modifier

Et les avantages du système ? On n'en parle pas, le plus important étant (si la clef est échangée de façon sûre) l'impossibilité d'être cassé par l'ordinateur quantique. 109.217.212.157 (discuter) 5 mai 2021 à 13:48 (CEST)[répondre]

Revenir à la page « Masque jetable ».