Digesteur

réacteur de méthanisation
Digesteur
Description de cette image, également commentée ci-après
Diagramme de fonctionnement
Informations générales
Chaine d'assainissement Stockage et traitement
Produits entrants eaux usées
Eaux brunes
Boues d'épuration
Matières organiques
Produits sortants Digestat
Biogaz
Niveau d'application Voisinage
Ménages
Municipal
Traitement
Étape Primaire
Secondaire
Procédé Biologique (anaérobie)

Un digesteur, aussi appelé réacteur à biogaz ou méthaniseur, désigne une cuve utilisée dans le processus de méthanisation qui produit du biogaz grâce à un procédé de digestion anaérobie des matières organiques de diverses provenances.

Il existe différentes formes et tailles de digesteurs. Dans une des techniques rudimentaires utilisées dans les débuts, le digesteur se présente sous la forme d'une fosse hermétique, dans laquelle sont déversées des eaux usées, des boues, et des composés organiques supplémentaires permettant de faciliter la digestion. Le gaz se forme dans les boues et remonte à la surface, mélangeant les boues par ce processus. Les boues digérées, appelées digestat, peuvent être vidangées et utilisées comme engrais.

ConceptionModifier

 
Unité de méthanisation agricole, avec digesteur en coupe.

Les deux principaux types de digesteurs sont soit des réservoirs préfabriqués, soit des dômes en brique ou en béton. Le dôme peut être fixe (pour un volume constant, la pression permettant d'acheminer le gaz dans des conduits) ou flottant (avec un volume variable).

Le temps de rétention hydraulique est généralement de 15 jours en climat chaud et 25 jours en climat tempéré, mais peut aller jusqu'à 60 jours si les produits entrants sont hautement contaminés, comme dans le cas de boues. Le fumier et les déchets organiques permettent de bien meilleurs rendements de gaz que les eaux usées.

Leur taille varie de mille litres pour un digesteur familial à cent mille litres pour une installation communale.

Conditions favorablesModifier

Ces cuves doivent être chauffées pour que le rendement soit acceptable. Ce sont des digesteurs mésophiles la plupart du temps mais il existe aussi des réacteurs thermophiles[1]. Les avantages sont multiples et notamment au niveau des odeurs et des bactéries qui sont détruites. Un réacteur produit environ 50 à 70 % de méthane, 30 % de CO2 et de l'eau, de l'hydrogène sulfuré (H2S) et de l'oxygène. Les avantages sont nombreux[2].

Par ailleurs, le mélange à digérer doit comporter une bonne proportion entre résidus carbonés et résidus azotés qui correspond à celle entre le carbone et l'hydrogène dans le méthane.

Le processus de digestion complet durant un certain nombre de jours, la matière effluente doit être remplacée lorsque les possibilités de fermentation sont épuisées. Toutefois, il existe des configurations de digesteurs ayant la forme d'un tunnel ou d'une cuve dans lesquelles le rechargement se fait de façon continue sans interrompre le processus en fin de cycle[3].

CaractéristiquesModifier

Les principales grandeurs qui caractérisent un réacteur de digestion anaérobie sont :

  • La charge volumique appliquée[4] : il s’agit de la quantité de DCO introduite dans le réacteur par jour et par unité de volume du réacteur. Elle permet de comparer la quantité de pollution traitée par différents types de réacteur.
  • Le temps de séjour hydraulique (TSH) correspond à la durée du contact entre l’effluent et la biomasse. Il représente le rapport entre le volume du réacteur et le débit d’alimentation. Le TSH permet de connaître le volume d’effluent qu’on peut traiter chaque jour dans le réacteur[4].
  • La quantité et la composition du gaz[5] : la quantité de gaz peut être rapportée à la quantité de matière organique éliminée (rendement) ou au volume du réacteur (productivité). La composition du gaz est variable selon l’état du réacteur.

ApplicationsModifier

Déchets agricolesModifier

Déchets industrielsModifier

Boues urbainesModifier

Notes et référencesModifier

  1. Moletta 2015, p. 42.
  2. Biogaz issus de déchets alimentaires pour cogénération / CHP
  3. Moletta 2015, p. 170-176, « Technologies appliquées à la gestion des déchets agricoles »
  4. a et b Moletta 2015, p. 47.
  5. Moletta 2015, p. 49.

BibliographieModifier

Voir aussiModifier