En physique, et plus particulièrement en thermodynamique, les coefficients calorimétriques et thermoélastiques sont des coefficients permettant d'exprimer, pour les premiers, la chaleur absorbée par un système thermodynamique et, pour les seconds, les variations de volume et de pression de ce système. Ces coefficients sont définis pour les corps purs comme pour les mélanges. Les transformations étudiées pour les établir s'effectuent sans changement de composition ni de phase.
Lorsqu'elles existent, les notations recommandées par le Green Book de l'Union internationale de chimie pure et appliquée (IUPAC)[1] sont indiquées entre parenthèses. Par exemple les notations proposées pour le coefficient de dilatation isobare sont signalées (Green Book p. 56 : , , ). Ces préconisations sont dans la mesure du possible respectées dans cet article, sauf lorsqu'un autre usage prévaut ; par exemple la compressibilité isotherme est notée selon un usage courant dans la littérature[2], alors que le Green Book p. 56 préconise .
Toutes ces définitions supposent des transformations à composition constante, c'est-à-dire l'absence de réaction chimique, d'apport ou d'extraction de matière. Ces transformations ayant lieu à quantité de matière constante , ceci ne sera pas reporté dans les notations afin d'alléger les expressions mathématiques. Il sera par exemple noté plutôt que . De même, les termes liés aux variations des quantités de matière ne seront pas reportés dans les différentielles : par exemple la différentielle de l'énergie interne sera simplifiée en . Ces transformations ont également lieu en l'absence de changement de phase, le corps pur ou le mélange subissant la transformation étant supposé en une seule phase. Enfin, les mélanges sont supposés homogènes.
Dans une transformation réversible, la chaleur absorbée par un corps pur ou un mélange de composition constante peut être exprimée à l'aide de six coefficients calorimétriques selon les variables suivies lors de la transformation[3],[4] :
Elle représente la chaleur absorbée par le corps lors d'une variation de température à volume constant ;
le coefficient de dilatation isotherme (anciennement coefficient de chaleur latente de dilatation isotherme[5]), grandeur intensive exprimée en pascals, Pa :
Coefficient de dilatation isotherme :
Il représente la chaleur absorbée par le corps lors d'une variation de volume à température constante ;
(Green Book p. 56) la capacité thermique isobare (anciennement capacité calorifique à pression constante[5]), grandeur extensive exprimée en joules par kelvin, J/K :
Capacité thermique isobare :
Elle représente la chaleur absorbée par le corps lors d'une variation de température à pression constante ;
le coefficient de compression isotherme (anciennement coefficient de chaleur latente de compression isotherme[5]), grandeur extensive exprimée en mètres cubes, m3 :
Coefficient de compression isotherme :
Il représente la chaleur absorbée par le corps lors d'une variation de pression à température constante ;
un coefficient sans nom attribué (anciennement coefficient de chaleur latente de dilatation isobare[5]), grandeur intensive exprimée en pascals, Pa :
Il représente la chaleur absorbée par le corps lors d'une variation de volume à pression constante ;
un coefficient sans nom attribué (anciennement coefficient de chaleur latente de compression isochore[5]), grandeur extensive exprimée en mètres cubes, m3 :
Il représente la chaleur absorbée par le corps lors d'une variation de pression à volume constant.
Les trois coefficients thermoélastiques servent à exprimer la variation de volume ou de pression d'un corps pur ou d'un mélange à composition constante lors d'une transformation réversible[2] :
Les deux capacités thermiques et sont des grandeurs extensives, elles sont proportionnelles à la quantité de matière, ou à la masse, contenue dans le système subissant la transformation.
On définit les capacités molaires, grandeurs intensives exprimées en J K−1 mol−1, par (Green Book p. 56) :
Capacité thermique isochore molaire :
Capacité thermique isobare molaire :
Ces grandeurs peuvent également être notées respectivement et (Green Book p. 56).
On définit les capacités massiques (ou spécifiques), grandeurs intensives exprimées en J K−1 kg−1, par (Green Book p. 56) :
Capacité thermique isochore massique :
Capacité thermique isobare massique :
Si le système contient espèces chimiques, chaque espèce étant représentée par la quantité , on peut définir pour chaque espèce des capacités molaires partielles, grandeurs intensives exprimées en J K−1 mol−1 (Green Book p. 57) :
Capacité thermique isochore molaire partielle de :
Ce coefficient est une grandeur intensive exprimée en Pa−1. Il représente la variation relative de volume due à une variation de pression à entropie constante.
La différentielle du volume pouvant s'écrire :
en considérant les définitions de et on obtient la relation :
Soit le coefficient de Laplace ou indice adiabatique, noté (Green Book p. 57 : , ) et défini par :
Coefficient de Laplace :
Ce coefficient est une grandeur intensiveadimensionnelle. Les capacités thermiques dépendent de la température, de la pression et du volume, ce coefficient n'est donc pas une constante. Cependant, dans le cas des gaz parfaits, les capacités thermiques ne dépendent que de la température, et il peut être admis que ce coefficient est constant sur de courtes plages de température : un gaz parfait pour lequel ne dépend pas de la température est appelé gaz de Laplace et répond à la loi de Laplace. Pour des processus isentropiques impliquant de grands changements de température la loi de Laplace n'est pas rigoureuse, il faut alors tenir compte de la variation de avec la température.
Le facteur de compressibilité est une grandeur intensiveadimensionnelle représentant le rapport du volume d'un fluide réel au volume du gaz parfait correspondant aux mêmes pression, température et composition : selon la loi des gaz parfaits. Le facteur de compressibilité vaut donc 1 pour un gaz parfait, quelles que soient sa pression, sa température et sa composition.
Le facteur de compressibilité est lié aux coefficients thermoélastiques du fluide réel et du gaz parfait correspondant par les relations[6] :
Variation isobare :
Variation isochore :
Variation isotherme :
avec :
le coefficient de dilatation isobare du gaz parfait correspondant ;
le coefficient de compression isochore du gaz parfait correspondant ;
le coefficient de compressibilité isotherme du gaz parfait correspondant ;
le module d'élasticité isostatique du gaz parfait correspondant.
Ces démonstrations utilisent les équations d'état, relations définissant la pression, la température, le volume et l'entropie en tant que dérivées partielles des potentiels thermodynamiques dans leurs variables naturelles.
La différentielle de l'énergie interne dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :
Ni la température ni la pression ne sont des variables naturelles de .
On définit un nouveau coefficient appelé coefficient de Joule-Gay-Lussac :
Coefficient de Joule-Gay-Lussac :
Dans une détente isoénergétique ce coefficient, qui s'exprime en K m−3, permet de quantifier le changement de température d'un corps en fonction de son volume. Lorsque la température augmente lorsque le volume augmente ; lorsque la température diminue lorsque le volume augmente. Pour les gaz parfaits, d'où : leur température ne varie pas dans ce genre de détente et ces gaz répondent à la première loi de Joule. La plupart des gaz réels se refroidissent dans une détente isoénergétique (), quelle que soit la température initiale. Les exceptions connues sont l'hélium, l'hydrogène et certains gaz rares qui ont des plages de température et de volume dans lesquelles ils se réchauffent dans ce type de détente ()[9].
avec la masse volumique et la capacité thermique isochore massique. Ce paramètre est une grandeur intensiveadimensionnelle, de l'ordre de grandeur de quelques unités à toute température pour la majorité des solides ; il existe quelques cas de valeurs très élevées, positives ou négatives[13].
Les relations (rd2), (r1) et (r2) donnent successivement :
La différentielle de l'enthalpie dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :
Ni la température ni le volume ne sont des variables naturelles de .
On définit un nouveau coefficient appelé coefficient de Joule-Thomson (Green Book p. 57 : , )[17] :
Coefficient de Joule-Thomson :
Dans une détente isenthalpique ce coefficient, qui s'exprime en K Pa−1, permet de quantifier l'effet Joule-Thomson. Lorsque la température diminue lorsque la pression diminue ; lorsque la température augmente lorsque la pression diminue. Pour les gaz parfaits, d'où : leur température ne varie pas dans ce genre de détente et ces gaz répondent à la deuxième loi de Joule[17]. Pour les gaz réels aux hautes températures , quelle que soit la pression. Pour des températures plus basses il existe, pour la plupart des gaz réels, des couples pression-température auxquels : le coefficient de Joule-Thomson s'y annule et change de signe, aux basses pressions , aux hautes pressions [17].
La différentielle de l'énergie libre dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :
La différentielle de l'enthalpie libre dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :
et par conséquent, respectivement par (rf1), (rf3), (rf5) et (rf7), les relations[18] :
Conditions de stabilité
(rs1) :
(rs2) :
(rs3) :
(rs4) :
Une capacité thermique positive correspond aux observations communes : un corps absorbe de la chaleur lorsque sa température augmente et en restitue lorsqu'elle diminue. De même, le volume d'un corps diminue sous l'effet de la pression ; le signe de l'expression est donc nécessaire pour obtenir une valeur positive. En remplaçant le volume par la masse volumique, avec la masse, le coefficient de compressibilité isotherme peut s'écrire[2] :
La thermodynamique n'interdit pas que ces coefficients soient négatifs, mais un corps présentant de telles propriétés serait instable considéré seul car il diminuerait l'entropie, en contradiction avec le deuxième principe de la thermodynamique : une telle situation est donc difficilement observable. Cependant des coefficients négatifs peuvent être observés dans un contexte impliquant des phénomènes compensant cette instabilité. En physique stellaire la stabilité des étoiles est expliquée par une capacité thermique négative due à l'attraction gravitationnelle entre ses constituants. Une étoile génère par fusion nucléaire plus d'énergie qu'elle ne peut en rayonner, ce qui, avec une capacité thermique positive, induirait une telle accumulation de chaleur, et donc une telle augmentation de température, que l'étoile serait instable et mourrait rapidement. La capacité thermique négative permet d'accumuler la chaleur tout en maintenant une température stable[19]. D'autre part, des coefficients de compressibilité négatifs ont été observés sur des mousses métalliques et des cristaux composés d'eau et de méthanol, ces phénomènes étant expliqués par l'architecture des cristaux à l'échelle moléculaire[20],[21],[22].
La stabilité d'un corps impose également des relations telles que[18] :
qui (respectivement à l'aide de (rf2), (rf8), (rf13) et (rf3), (rf5), (rf11)) se traduisent en termes de coefficients calorimétriques et thermoélastiques par :
Conditions de stabilité
(rs5) :
(rs6) :
Le volume d'un corps augmente généralement sous l'effet d'une augmentation de la température, aussi le coefficient de dilatation isobare est-il le plus souvent positif. Néanmoins, la relation (rs6) n'impose pas le signe de ce coefficient, qui peut donc être négatif pour un corps stable[23]. L'eau liquide en est un exemple entre 0 °C et 4 °C sous 1 atm : une augmentation de la température provoque une contraction du volume, d'où un maximum de densité à 4 °C, constituant une anomalie dilatométrique[24].
Le signe du coefficient de compression isochore est le plus souvent positif, la pression augmentant le plus souvent avec la température à volume constant.
La relation (r2) et la définition de permettent d'établir la première relation de Clapeyron[8] :
Première relation de Clapeyron : (rc1) :
La relation (r3) et la définition de permettent d'établir la deuxième relation de Clapeyron[16] :
Deuxième relation de Clapeyron : (rc2) :
Ces deux relations, appelées collectivement relations de Clapeyron[26], ne doivent pas être confondues avec la relation de Clapeyron, également appelée formule de Clapeyron, exprimant l'évolution de la pression de changement d'état d'un corps pur en fonction de la température.
Puisqu'un corps (pur ou mélange) ne peut être stable que si (relation (rs3)), cette relation induit que[27] :
Relation entre capacités thermiques :
Dans le cas d'une phase condensée (liquide ou solide), il peut être considéré que :
la phase est quasiment indilatable, son volume varie peu lors d'un changement de température : , soit ;
la phase est quasiment incompressible, son volume varie peu lors d'un changement de pression : , soit .
Pour une phase idéalement indilatable () ou incompressible (), la relation de Mayer conduit à la relation : [28]. Les bases de données ne donnent pour les liquides et les solides, considérés comme idéalement indilatables et incompressibles, qu'une seule capacité thermique molaire :
Pour un corps idéalement indilatable ou incompressible :
Rappelons la définition des coefficients thermoélastiques :
Coefficients thermoélastiques :
Il est donc possible, si l'on connait deux des trois coefficients thermoélastiques, d'établir une équation d'état :
explicite en volume en fonction de la pression et de la température, , si l'on connait et , puisque l'on connait les deux dérivées partielles du volume :
explicite en pression en fonction du volume et de la température, , si l'on connait et , puisque l'on connait les deux dérivées partielles de la pression :
Si seuls et sont connus, la relation (r1) permet de déterminer et de revenir à l'un des deux cas précédents.
La connaissance de peut être remplacée par celle de selon la relation (r3).
La connaissance de peut être remplacée par celle de selon la relation (r2).
La connaissance de peut être remplacée par celle de , qui par définition est son inverse (relation (rd2)).
où est une fonction de seul. On injecte cette solution dans la deuxième équation :
On a donc, en injectant l'expression de :
La solution est de la forme :
soit :
avec une constante.
ou, avec et :
soit :
Démonstration.
Avec la première équation différentielle, on a :
dont la solution est de la forme :
où est une fonction de seule. On injecte cette solution dans la deuxième équation :
On a donc, en injectant l'expression de :
La solution est de la forme :
soit :
avec une constante.
Quel que soit le système d'équations résolu, on obtient :
avec une constante. Les seules variables considérées ici sont la pression, la température et le volume, les intégrations ont été faites à quantité de matière constante. On sait néanmoins que le volume est une grandeur extensive ; par conséquent, à pression et température constantes, doubler par exemple la quantité de matière induit un doublement du volume. Dans l'équation précédente, ceci ne peut être vérifié que si est une fonction de : , avec constante. La donnée du volume molaire dans les CNTP permet de déduire que , la constante universelle des gaz parfaits.
Si dans les CNTP le volume molaire avait été différent de 22,414 l, alors . Un gaz dont la température ne varie ni dans une détente de Joule-Gay-Lussac, ni dans une détente de Joule-Thomson, pourrait ne pas être un gaz parfait, mais répondrait néanmoins à une équation d'état de la forme avec constante.
En conclusion, si les gaz parfaits suivent les deux lois de Joule, la réciproque n'est pas vraie : un gaz suivant les deux lois de Joule n'est pas nécessairement un gaz parfait.
Exemple 2 : équation d'état simplifiée d'une phase condensée
Les coefficients et d'une phase condensée (liquide ou solide) sont très faibles (phase condensée peu dilatable et peu compressible) et considérés comme constants. On a donc :
Démonstration.
Avec la première équation différentielle, on a :
étant supposé constant, la solution est de la forme :
où est une fonction de seule.
On injecte cette solution dans la deuxième équation :
On a donc, en injectant l'expression de :
étant supposé constant, la solution est de la forme :
soit :
avec une constante.
Si on connait le volume sous la pression à la température , alors :
Étant donné que et , en considérant de faibles variations de température autour de et de pression autour de , on a par développement limité[32] :
Pour un solide, il est supposé que le volume ne dépend pas de la température (solide indilatable) et que le module de compressibilité isostatique varie linéairement avec la pression. On a donc :