Cercle inscrit

cercle qui est tangent à tous les côtés d'un polygone

En géométrie, un cercle inscrit à un polygone est un cercle qui est tangent à tous les côtés de ce polygone. De manière plus générale, on parle de cercle inscrit dans une surface bornée pour indiquer un cercle de plus grand rayon possible inclus dans la surface. Un polygone ayant un cercle inscrit est dit circonscriptible.

Existence

modifier

Pour qu'un polygone possède un unique cercle inscrit, il faut que ses bissectrices soient concourantes. Si c'est le cas, le point d'intersection est le centre du cercle inscrit.

Cas particuliers

modifier

Triangle

modifier
 
Cercle inscrit dans un triangle

Tout triangle non plat possède un unique cercle inscrit.

Quadrilatère

modifier
 
Un quadrilatère tangentiel admet un cercle inscrit

Un quadrilatère pour lequel il existe un cercle inscrit est dit circonscriptible ou tangentiel ; les losanges et les carrés sont toujours circonscriptibles.

Le théorème de Pitot permet de caractériser les quadrilatères tangentiels.

Bibliographie

modifier
  • Jean-Denis Eiden, Géométrie analytique classique, Calvage & Mounet, 2009, (ISBN 978-2-91-635208-4)
  • Méthodes modernes en géométrie de Jean Fresnel
  • Bruno Ingrao, Coniques affines, euclidiennes et projectives, C&M, (ISBN 978-2-916352-12-1)


Voir aussi

modifier