Écoulement laminaire

écoulement ordonné d'un fluide

En mécanique des fluides, l'écoulement laminaire est le mode d'écoulement d'un fluide où l'ensemble du fluide s'écoule plus ou moins dans la même direction, sans que les différences locales se contrarient (par opposition au régime turbulent, fait de tourbillons qui se contrarient mutuellement).

Schéma d'une sphère placée dans un écoulement laminaire à très faible nombre de Reynolds. L'objet subit alors une force de trainée dans la direction opposée à celle de l'écoulement.
La fumée d'une bougie, laminaire en bas, turbulente en haut.

L'écoulement laminaire est généralement celui qui est recherché lorsqu'on veut faire circuler un fluide dans un tuyau (car il crée moins de pertes de charge), ou faire voler un avion (car il est plus stable, et prévisible par les équations).

Définition modifier

Point de vue microscopique modifier

Dans un écoulement laminaire, deux particules de fluide voisines à un instant donné restent voisines aux instants suivants. Ceci permet de décrire le champ de vitesses en utilisant les techniques classiques d'analyse mathématique. Quand l'écoulement devient turbulent, il est sans organisation apparente, et les techniques classiques ne suffisent plus.

Point de vue macroscopique modifier

Les notions de régime laminaire ou turbulent sont liées à la viscosité du fluide. Dans une conduite ou autour d'un obstacle, au voisinage d'une paroi sur laquelle la vitesse relative du fluide est nulle, apparaissent de fortes variations de vitesse qui impliquent donc la viscosité.

Plus précisément un écoulement visqueux est caractérisé par un nombre sans dimension, le nombre de Reynolds, qui mesure l'importance relative des forces inertielles liées à la vitesse et des forces de frottement liées à la viscosité. Si ces dernières sont prépondérantes, le frottement entre deux couches fluides maintient leur cohésion et l'on obtient un écoulement laminaire. Lorsque le nombre de Reynolds augmente au-delà d'une certaine limite, l'écoulement est déstabilisé, ce qui peut conduire à la turbulence après une phase de transition plus ou moins importante.

Cas classiques modifier

Cas des conduites d'eau à section circulaire modifier

L'écoulement dans les conduites est laminaire pour des nombres de Reynolds inférieurs à la valeur de transition qui est de l'ordre de 2000. Le profil des vitesses a alors une forme parabolique. Mais ce profil se transforme en une forme plus anguleuse au-dessus du Reynolds ~ 2000, lorsque la turbulence apparaît.

Cas des corps profilés dans l'air modifier

La viscosité de l'air étant beaucoup plus faible que celle de l'eau, son effet est également plus faible et se limite à une zone proche de la paroi, appelée couche limite, dans laquelle la vitesse varie fortement avec la distance à la paroi sous l'effet de la viscosité. À une distance suffisante de la paroi cependant, lorsqu'on est en dehors de la couche limite, l'influence de la viscosité peut être négligée : il est alors possible de considérer le fluide comme un fluide parfait (c'est-à-dire non visqueux) s'écoulant autour du corps engraissé de sa couche limite (un fluide parfait étant justiciable de l'équation de Bernoulli).

Au bord d'attaque d'une aile, la vitesse relative est nulle, donc la viscosité est sans effet. À partir de là, la couche limite se développe à mesure que l'on longe la paroi vers l'aval, ce qui conduit à décrire ladite couche limite en fonction d'un nombre de Reynolds local dans lequel la longueur caractéristique n'est pas une dimension de l'obstacle (souvent sa corde) mais la distance à partir du bord d'attaque. Lorsque l'on part du bord d'attaque, la couche limite est d'abord laminaire avant de changer de régime et devenir turbulente (non sans une zone de transition).
Il faut noter cependant que la partie de la couche limite turbulente la plus proche de la paroi forme un film mince (ou sous-couche) laminaire, même si cette sous-couche laminaire est souvent négligée dans les calculs.

Cas des corps non profilés modifier

Dans certains cas, l'écoulement passe directement du laminaire au turbulent (cas des plaques planes exposées frontalement). Dans d'autres cas (comme celui de la sphère ou du cylindre infini exposé frontalement), la transition de la couche limite du régime laminaire au régime turbulent est à l'origine de soudaines modifications de l'écoulement (et du  , voir la crise de traînée de la sphère et du cylindre). À l'aval d'un corps non ou mal profilé se forme souvent un sillage tourbillonnaire qui s'organise en fréquences régulières (voir nombre de Strouhal).

Transition laminaire-turbulent modifier

Effet d'un forçage stationnaire modifier

 
(a) Écoulement laminaire, (b) écoulement turbulent.

L’étude du passage d’un écoulement laminaire à un écoulement turbulent lorsque le nombre de Reynolds augmente a pu être faite dans certains cas en se basant sur la théorie des systèmes dynamiques (bifurcations). Les instabilités sont directement associées au terme non linéaire inertiel de transport par convection de l’équation de Navier-Stokes. La réponse non stationnaire à une excitation stationnaire témoigne du caractère non linéaire de la dynamique des fluides.

  • Si Re < 1, l’équation est linéaire car les phénomènes de diffusion dominent. L'équation de Navier-Stokes se simplifie et devient l’équation de Stokes ;
  • Si Re > 2000, l’équation est non linéaire car les phénomènes convectifs dominent. Les non linéarités produiront des effets non stationnaires pour un forçage stationnaire, des brisures de symétries par rapport aux conditions aux limites initiales, en d'autres termes, la turbulence. Ce changement brutal qui s’opère correspond au passage du mode de transport de diffusion dominant au mode de transport convectif dominant.

Dissipation de l’énergie cinétique modifier

Le tenseur des gradients de vitesse s’écrit comme la somme d’un tenseur symétrique et d’un tenseur antisymétrique : le tenseur des taux de déformation est directement lié à la dissipation d’énergie cinétique sous forme de chaleur alors que le tenseur des taux de rotation est relié aux tourbillons. Dans un écoulement quelconque, on a une distribution de déformation (qui dissipe l’énergie) et une contribution de rotation (qui ne la dissipe pas).

La turbulence permet de dissiper l’énergie cinétique plus efficacement qu’un écoulement laminaire.

En régime turbulent, l’énergie cinétique fournie à l’écoulement à grande échelle (typiquement la taille de l’écoulement) est transmise vers les petites échelles par le mécanisme de cascade d’énergie : des mouvements tourbillonnants à l’échelle de l’écoulement moyen sont générateurs de tourbillons à des échelles un peu plus petites qui eux-mêmes génèrent des mouvements à des échelles plus petites, etc. Ce processus de cascade d’énergie se termine finalement lorsque les mouvements excités de très petite taille sont dissipés en chaleur sous l’effet de la viscosité moléculaire. On peut ainsi dire, d’une certaine manière, que la dissipation a lieu par transfert d’énergie vers les petites échelles dans un écoulement turbulent. Ce n’est pas le cas en régime laminaire où la dissipation opère directement à grande échelle.

Turbulence et dissipation modifier

Un écoulement moyen forme de petites structures par le mécanisme d’étirement du tourbillon. Ces petites structures correspondent au champ fluctuant de la décomposition de Reynolds. L’énergie est donc passée de l’écoulement moyen vers ces tubes qui ont de forts gradients, tournent vite et sont petits, et donc dissipent efficacement l’énergie.

Notes et références modifier


Voir aussi modifier