Utilisateur:Lionel Allorge/There's Plenty of Room at the Bottom

Traduction de la page There's Plenty of Room at the Bottom modifier

Lien vers le texte : http://www.pa.msu.edu/~yang/RFeynman_plentySpace.pdf

"There's Plenty of Room at the Bottom" was a lecture given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959.[1] Feynman considered the possibility of direct manipulation of individual atoms as a more powerful form of synthetic chemistry than those used at the time. The talk went unnoticed and it didn't inspire the conceptual beginnings of the field. In the 1990s it was rediscovered and publicised as a seminal event in the field, probably to boost the history of nanotechnology with Feynman's reputation.

« There's Plenty of Room at the Bottom » (Il y a plein de place en bas en français) est une conférence donnée par le physicien Richard Feynman lors d'une réunion de la Société américaine de physique à Caltech le . Feynman y a envisagé la possibilité de manipulation directe des atomes individuels comme une méthode plus puissante pour la chimie de synthèse que celles utilisées à l'époque. La conférence est passée inaperçue à l'époque et n'a pas motivée les débuts conceptuels dans ce domaine. Dans les années 1990, elle a été redécouverte et médiatisée comme un événement majeur de ce domaine, probablement pour renforcer l’histoire de la nanotechnologie grâce à la réputation de Feynman.

Conception modifier

Feynman considered a number of interesting ramifications of a general ability to manipulate matter on an atomic scale. He was particularly interested in the possibilities of denser computer circuitry, and microscopes that could see things much smaller than is possible with scanning electron microscopes. These ideas were later realized by the use of the scanning tunneling microscope, the atomic force microscope and other examples of scanning probe microscopy and storage systems such as Millipede, created by researchers at IBM.

Feynman a envisagé un certain nombre d'applications intéressantes à partir de la possibilité de manipuler la matière à l'échelle atomique. Il était particulièrement intéressé par les possibilités de circuits informatiques plus dense et par des microscopes qui pourraient voir des choses beaucoup plus petites que ce qui était possible avec un microscope électronique à balayage. Ces idées ont ensuite été concrétisées par la mise au point du microscope à effet tunnel, du microscope à force atomique et d'autres exemples de systèmes de microscopie à sonde locale ainsi que du stockage d'information tels que le Millipede, créé par des chercheurs chez IBM.

Feynman also suggested that it should be possible, in principle, to make nanoscale machines that "arrange the atoms the way we want", and do chemical synthesis by mechanical manipulation.

Feynman a également suggéré qu'il devrait être possible, en principe, de faire des machines nanométriques qui pourraient « arranger les atomes comme nous le voulons » et de faire de la synthèse chimique par manipulation mécanique des atomes.

He also presented the possibility of "swallowing the doctor," an idea that he credited in the essay to his friend and graduate student Albert Hibbs. This concept involved building a tiny, swallowable surgical robot.

Il a également présenté la possibilité d'« avaler le médecin », une idée qu'il met au crédit de son ami et étudiant diplômé Albert Hibbs. Ce concept implique la construction d'un minuscule robot chirurgical à avaler.

As a thought experiment he proposed developing a set of one-quarter-scale manipulator hands slaved to the operator's hands to build one-quarter scale machine tools analogous to those found in any machine shop.

Comme expérience de pensée, il a proposé l'élaboration d'un ensemble de mains manipulatrices à l'échelle d'un quart asservies aux mains de l'opérateur pour construire des machines-outils à l'échelle des outils analogues à ceux trouvés dans un magasin.

This set of small tools would then be used by the small hands to build and operate ten sets of one-sixteenth-scale hands and tools, and so forth, culminating in perhaps a billion tiny factories to achieve massively parallel operations.

Cet ensemble de petits outils serait alors utilisé par les petites mains pour construire et utiliser dix ensembles de mains et d'outils à l’échelle d'un seizième, et ainsi de suite, aboutissant à peut-être un milliard de petites usines pour réaliser des opérations massivement parallèles.

He uses the analogy of a pantograph as a way of scaling down items.

Il utilise l'analogie d'un pantographe comme un moyen de mise à l'échelle vers le bas des objets.

This idea was anticipated in part, down to the microscale, by science fiction author Robert A. Heinlein in his 1942 story Waldo[2],[3].

Cette idée a été anticipée en partie, jusqu'à la micrométrique, par l’auteur de science-fiction Robert A. Heinlein dans sa nouvelle de 1942 nommée Waldo (en).

As the sizes got smaller, one would have to redesign some tools, because the relative strength of various forces would change. Although gravity would become unimportant, surface tension would become more important, Van der Waals attraction would become important, etc.

Comme les tailles deviennent plus petites, il faudrait repenser certains outils parce que l'action relative de diverses forces allaient changer. La gravité deviendrait sans importance alors que la tension superficielle serait plus importante ainsi que la force de van der Waals, etc.

Feynman mentioned these scaling issues during his talk. Nobody has yet attempted to implement this thought experiment, although it has been noted[réf. nécessaire] that some types of biological enzymes and enzyme complexes (especially ribosomes) function chemically in a way close to Feynman's vision.

Feynman mentionne ces questions d'échelle lors de son discours. Personne n'a encore tenté de mettre en œuvre cette expérience de pensée, bien qu'il ait été noté que certains types d'enzymes biologiques et des complexes enzymatiques (en particulier les ribosomes) fonctionnent chimiquement d'une manière proche de la vision de Feynman.

Challenges modifier

Défis modifier

At the meeting, Feynman concluded his talk with two challenges, and he offered a prize of $1000 for the first individuals to solve each one. The first challenge involved the construction of a tiny motor, which, to Feynman's surprise, was achieved by November 1960 by William McLellan, a meticulous craftsman, using conventional tools. The motor met the conditions, but did not advance the art. The second challenge involved the possibility of scaling down letters small enough so as to be able to fit the entire Encyclopædia Britannica on the head of a pin, by writing the information from a book page on a surface 1/25,000 smaller in linear scale. In 1985, Tom Newman, a Stanford graduate student, successfully reduced the first paragraph of A Tale of Two Cities by 1/25,000, and collected the second Feynman prize[4],[5].

Lors de la réunion, Feynman a conclu sa conférence avec deux défis et il a offert un prix de 1 000 $ chaque pour les premiers qui les résoudraient. Le premier défi impliquait la construction d'un petit moteur qui, à la surprise de Feynman, a été réalisé en par William McLellan, un artisan méticuleux, en utilisant des outils classiques. Le moteur satisfaisait aux conditions mais n'a pas permis une avancée de l'art. Le deuxième défi impliquait la possibilité d'une diminution de la taille des lettres suffisante pour être en mesure d'inscrire l'ensemble de l'Encyclopædia Britannica sur la tête d'une épingle, en écrivant l'information à partir d'une page de livre sur une surface 1/25 000 fois plus petite. En 1985, Tom Newman, un étudiant diplômé de Stanford, a réussi à réduire le premier paragraphe de Le Conte de deux cités de 1/25 000 et reçu le second prix Feynman.

Impact modifier

K. Eric Drexler later took the Feynman concept of a billion tiny factories and added the idea that they could make more copies of themselves, via computer control instead of control by a human operator, in his 1986 book Engines of Creation: The Coming Era of Nanotechnology.

K. Eric Drexler a repris plus tard le concept de Feynman d'un milliard de petites usines et a ajouté l'idée qu'elles pourraient faire des copies d'elles-mêmes, via un contrôle par informatique à la place d'un opérateur humain, dans son livre de 1986 Engines of Creation: The Coming Era of Nanotechnology.

After Feynman's death, scholars studying the historical development of nanotechnology have concluded that his actual role in catalyzing nanotechnology research was limited, based on recollections from many of the people active in the nascent field in the 1980s and 1990s. Chris Toumey, a cultural anthropologist at the University of South Carolina, has reconstructed the history of the publication and republication of Feynman’s talk, along with the record of citations to “Plenty of Room” in the scientific literature.[6][7] In Toumey's 2008 article, "Reading Feynman into Nanotechnology", he found 11 versions of the publication of “Plenty of Room", plus two instances of a closely related talk by Feynman, “Infinitesimal Machinery,” which Feynman called “Plenty of Room, Revisited.” Also in Toumey’s references are videotapes of that second talk.

Toumey found that the published versions of Feynman’s talk had a negligible influence in the twenty years after it was first published, as measured by citations in the scientific literature, and not much more influence in the decade after the Scanning Tunneling Microscope was invented in 1981. Subsequently, interest in “Plenty of Room” in the scientific literature greatly increased in the early 1990s. This is probably because the term “nanotechnology” gained serious attention just before that time, following its use by Drexler in his 1986 book, Engines of Creation: The Coming Era of Nanotechnology, which cited Feynman, and in a cover article headlined "Nanotechnology", published later that year in a mass-circulation science-oriented magazine, OMNI.[8][9] The journal Nanotechnology was launched in 1989; the famous Eigler-Schweizer experiment, precisely manipulating 35 xenon atoms, was published in Nature in April 1990; and Science had a special issue on nanotechnology in November 1991. These and other developments hint that the retroactive rediscovery of Feynman’s “Plenty of Room” gave nanotechnology a packaged history that provided an early date of December 1959, plus a connection to the charisma and genius of Richard Feynman.

Toumey’s analysis also includes comments from distinguished scientists in nanotechnology who say that “Plenty of Room” did not influence their early work, and in fact most of them had not read it until a later date.

Feynman's stature as a Nobel laureate and as an iconic figure in 20th century science surely helped advocates of nanotechnology and provided a valuable intellectual link to the past.[2] More concretely, his stature and concept of atomically precise fabrication played a role in securing funding for nanotechnology research, illustrated by President Clinton January 2000 speech calling for a Federal program:

« My budget supports a major new National Nanotechnology Initiative, worth $500 million. Caltech is no stranger to the idea of nanotechnology the ability to manipulate matter at the atomic and molecular level. Over 40 years ago, Caltech's own Richard Feynman asked, "What would happen if we could arrange the atoms one by one the way we want them?"[10] »

While the version of the Nanotechnology Research and Development Act that was passed by the House in May 2003 called for a study of the technical feasibility of molecular manufacturing, this study was removed to safeguard funding of less controversial research before the Act was passed by the Senate and finally signed into law by President Bush on December 3, 2003[11].

Fiction byproducts modifier

  • In "The Tree of Time", a short story published in 1964, Damon Knight uses the idea of a barrier that has to be constructed atom by atom (a time barrier, in the story).

See also modifier

References modifier

  1. Eric Drexler, « There's Plenty of Room at the Bottom »
  2. a et b Colin Milburn. Nanovision: Engineering the Future. Duke University Press, 2008. (ISBN 0-8223-4265-0)
  3. Ed Regis. Nano. Bantam, 1997. (ISBN 0-553-50476-2)
  4. (en) Richard Phillips Feynman et Christopher Sykes, No Ordinary Genius: The Illustrated Richard Feynman], W. W. Norton & Company, (ISBN 9780393313932, lire en ligne), p. 175
  5. (en) John Gribbin, Richard Feynman: A Life in Science, Dutton, , p. 170
  6. Chris Toumey. “Apostolic Succession.” Engineering & Science 1/2 (2005): 16-23.
  7. Chris Toumey. "Reading Feynman into Nanotechnology: A Text for a New Science". Techné 13.3 (2008):133-168. erreur modèle {{Lien archive}} : renseignez un paramètre « |titre= » ou « |description= »
  8. Fred Hapgood, « "Nanotechnology" / "Tinytech" », Omni,‎ , p. 56
  9. Eric Drexler, « The promise that launched the field of nanotechnology », Metamodern: The Trajectory of Technology, (consulté le )
  10. Remarks at the California Institute of Technology, January 21, 2000, Public Papers of William J. Clinton, January 1-June 26, 2000, p. 96
  11. Ed Regis, « The Incredible Shrinking Man », Wired,‎
  • R.P. Feynman, « There's plenty of room at the bottom (data storage) », Journal of Microelectromechanical Systems, vol. 1, no 1,‎ , p. 60–66 (DOI 10.1109/84.128057) A reprint of the talk.
  • R. Feynman, « Infinitesimal machinery », Journal of Microelectromechanical Systems, vol. 2, no 1,‎ , p. 4–14 (DOI 10.1109/84.232589) A sequel to his first talk.

External links modifier

{{Richard Feynman}} {{DEFAULTSORT:There's Plenty Of Room At The Bottom}} [[Category:Speeches]] [[Category:Nanotechnology publications]] [[Category:Physics literature]] [[Category:Works by Richard Feynman]] [[Category:1959 works]] [[Category:California Institute of Technology]] [[Category:American Physical Society]]