Théorème du sous-espace

En mathématiques, le théorème du sous-espace indique que les points de petite hauteur dans l'espace projectif se trouvent dans un nombre fini d'hyperplans. C'est un résultat obtenu par Wolfgang M. Schmidt en 1972.

Énoncé modifier

Le théorème du sous-espace énonce que si L1 ,. . ., Ln sont des formes linéaires linéairement indépendantes à n variables à coefficients algébriques et si ε>0 est un nombre réel donné, alors les points entiers non nuls x tels que

 

sont inclus dans un nombre fini de sous-espaces propres de Qn.

Une forme quantitative du théorème, dans laquelle le nombre de sous-espaces contenant toutes les solutions, a également été obtenue par Schmidt, et le théorème a été généralisé par Schlickewei (1977) pour permettre des valeurs absolues plus générales sur les corps de nombres.

Applications modifier

Le théorème peut être utilisé pour obtenir des résultats sur des équations diophantiennes telles que le théorème de Siegel sur les points entiers et la solution de l'équation des S-unité.[1]

Un corollaire sur l'approximation diophantienne modifier

Le corollaire suivant du théorème du sous-espace est souvent appelé théorème du sous-espace. Si a1 ..., an sont algébriques tels que 1, a1 ..., an sont linéairement indépendants sur Q et ε>0 est un nombre réel donné, alors il n'y a qu'un nombre fini de n-uplets rationnels (x1/y...,xn/y) avec

 

La spécialisation n = 1 donne le théorème de Thue-Siegel-Roth. On peut aussi noter que l'exposant 1+1/ n +ε est optimal par le théorème de Dirichlet sur l'approximation diophantienne.

Références modifier

  1. Bombieri & Gubler (2006) p. 176–230.