Théorème de Zeckendorf

Représentation de Zeckendorf des 89 premiers entiers. Les largeurs des rectangles sont des nombres de Fibonacci Fi, alors que les hauteurs correspondantes ont Fi-1.
Les rectangles de la mème couleur sont congruents.

Le théorème de Zeckendorf, dénommé ainsi d'après le mathématicien belge Édouard Zeckendorf, est un théorème de théorie additive des nombres qui garantit que tout entier naturel N peut être représenté, de manière unique, comme somme de nombres de Fibonacci distincts et non consécutifs. Cette représentation est appelée la représentation de Zeckendorf de N.

Énoncé et exemple modifier

Théorème de Zeckendorf[1] — Pour tout entier naturel N, il existe une unique suite d’entiers c0, ... , ck, avec   et ci+1 > ci + 1, tels que

 ,

Fn est le n-ième nombre de Fibonacci.

Par exemple, 0 est représenté par la somme vide. La représentation de Zeckendorf du nombre 100 est

 .

Le nombre 100 possède d'autres représentations comme somme de nombres de Fibonacci. Ainsi :

 
 
 
 
 
 

mais ces représentations contiennent des nombres de Fibonacci consécutifs. À toute représentation d'un entier N, on associe un mot binaire, dont la n-ième lettre est 1 si Fn figure dans la représentation de N et 0 sinon. Ainsi, aux représentations de 100 ci-dessus sont associés les mots :

 
 
 
 
 
 
 .

L'ensemble des mots binaires associés aux représentations de Zeckendorf forme un langage rationnel : ce sont le mot vide et les mots commençant par 1 et ne contenant pas deux 1 consécutifs. Une expression rationnelle de ce langage est

 .

Le codage de Fibonacci d'un entier est, par définition, le mot binaire associé à sa représentation, retourné et suivi d'un symbole 1. Ainsi, le codage de Fibonacci du nombre 100 est 00101000011.

Note historique modifier

Zeckendorf a publié sa démonstration du théorème en 1972[1], alors que l'énoncé était connu, sous le nom de « théorème de Zeckendorf », depuis longtemps. Ce paradoxe est expliqué dans l'introduction de l'article de Zeckendorf : un autre mathématicien, Gerrit Lekkerkerker (en), a rédigé la preuve du théorème (et d'autres résultats) à la suite d'un exposé de Zeckendorf, et l'a publié[2] en 1952, tout en attribuant la paternité à Zeckendorf. D'après Clark Kimberling[3], c'est un article de David E. Daykin[4], publié dans un journal prestigieux, qui a contribué à faire connaître le résultat et son auteur.

Démonstration modifier

La preuve du théorème est en deux parties :

1. Existence : L'existence de la représentation se prouve par l'emploi de l'algorithme glouton ou par récurrence sur N.

2. Unicité : Pour cette partie, on utilise le lemme suivant :

Lemme —  La somme de tout ensemble non vide de nombres de Fibonacci distincts et non consécutifs, dont le plus grand élément est Fj, est strictement inférieure à Fj+1.

Représentation des premiers entiers modifier

Dans la table, R(N) dénote la représentation de N sous forme de mot binaire.

N R(N)
0 0
1 1
2 10
3 100
4 101
5 1000
6 1001
7 1010
8 10000
9 10001
10 10010
11 10100

L'alternance des 0 et 1 dans chacune des colonnes correspond à l'absence ou la présence d'un rectangle dans la figure en tête de la page. La suite des derniers chiffres est

 

C'est le début du mot de Fibonacci. En effet, le n-ième symbole du mot de Fibonacci est 0 ou 1 selon que n est « Fibonacci pair » ou « Fibonacci impair ».

Variations modifier

Représentation par des nombres de Fibonacci d'indices négatifs modifier

La suite des nombres de Fibonacci peut être étendue aux indices négatifs, puisque la relation

 

permet de calculer   à partir de Fn et de  . On a (voir la section correspondante de l'article sur les nombres de Fibonacci) :

 

La suite complète est   Donald Knuth a remarqué[5] que tout entier relatif est somme de nombres de Fibonacci d'indices strictement négatifs qu'il appelle « Negafibonacci », la représentation étant unique si deux nombres utilisés ne sont pas consécutifs. Par exemple :

  •   ;
  •   ;
  •   ;
  •  .

Comme plus haut, on associe à la représentation d'un entier N un mot binaire, dont la n-ième lettre est 1 si Fn figure dans la représentation de N et 0 sinon. Ainsi, 24 est représenté par le mot 100101001. On observe que l'entier N est positif si et seulement si la longueur du mot associé est impaire.

Multiplication de Fibonacci modifier

Donald Knuth[6] considère une opération de multiplication   d'entiers naturels   et   définie comme suit : étant donné les représentations   et   le produit de Fibonacci est l'entier  .

Par exemple, comme 2 = F3 et 4 = F4 + F2, on a  .

Knuth a prouvé le fait surprenant que cette opération est associative.

Autres suites modifier

Zeckendorf prouve l'existence et l'unicité, sous condition, pour la représentation par les nombres de Lucas[1].

Knuth mentionne que le théorème de Zeckendorf reste vrai pour les suites de k-bonacci, sous réserve que l'on n'utilise pas k nombres consécutifs d'une telle suite[7].

Aviezri Fraenkel a donné un énoncé général qui étend les théorèmes précédents[8] : Soit   une suite d'entiers. Tout entier naturel N a exactement une représentation de la forme

 ,

  sont des entiers naturels, pourvu que

 

pour  .

Système d'Ostrowski modifier

Tout nombre irrationnel α admet un développement en fraction continue  . Si l'on pose  ,  ,  ,   et  ,  , on a  . La suite   forme une base pour un système de numération :

Théorème d'Ostrowski[9] — Soit α un nombre irrationnel, et soit (qn) la suite des dénominateurs des convergents de la fraction continue de α. Tout entier positif N s'écrit de manière unique sous la forme

 

où les bi sont des entiers satisfaisant les trois conditions suivantes :

  1.   ;
  2.   pour   ;
  3. Pour  , si  , alors  .

Pour le nombre d'or, les ai valent tous 1, les qn sont les nombres de Fibonacci et les trois conditions signifient que les termes de la somme sont distincts et non consécutifs.

Notes et références modifier

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Zeckendorf's theorem » (voir la liste des auteurs).
  1. a b et c Édouard Zeckendorf, « Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas », Bull. Soc. Roy. Sci. Liège, vol. 41,‎ , p. 179–182.
  2. (nl) Cornelis Gerrit Lekkerkerker, « Voorstelling van natuurlijke getallen door een som van getalle van Fibonacci » [« Représentation des nombres naturels par une somme de nombres de Fibonacci »], Simon Stevin, vol. 29,‎ , p. 190-195.
  3. (en) Clark Kimberling, « Edouard Zeckendorf [1901–1983] », Fibonacci Quart., vol. 36, no 5,‎ , p. 416–418.
  4. (en) D. E. Daykin, « Representation of Natural Numbers as Sums of Generalised Fibonacci Numbers », J. London Math. Soc., vol. 35,‎ , p. 143 -60.
  5. (en) Donald Knuth, « Negafibonacci Numbers and the Hyperbolic Plane », Paper presented at the annual meeting of the MAA, The Fairmont Hotel, San Jose, CA. 2008-12-11 [présentation en ligne].
  6. (en) Donald E. Knuth, « Fibonacci Multiplication », Applied Mathematics Letters, vol. 1, no 1,‎ , p. 57-60 (DOI 10.1016/0893-9659(88)90176-0)
  7. Exercice 5.4.2-10 dans (en) Donald E. Knuth, The Art of Computer Programming, vol. 3 : Sorting and Searching, , 2e éd. [détail de l’édition].
  8. (en) Aviezri S. Fraenkel, « Systems of Numeration », Amer. Math. Monthly, vol. 92, no 2,‎ , p. 105-114.
  9. Ce théorème est attribué à Alexander Ostrowski (1922). Voir : (en) Jean-Paul Allouche et Jeffrey Shallit, Automatic Sequences : Theory, Applications, Generalizations, Cambridge, Cambridge University Press, , 571 p. (ISBN 0-521-82332-3, MR 1997038, lire en ligne), Section 3.9.

Voir aussi modifier

Articles connexes modifier

Liens externes modifier