NF-κB pour nuclear factor-kappa B ou facteur nucléaire kappa B est une protéine de la superfamille des facteurs de transcription impliquée dans la réponse immunitaire et la réponse au stress cellulaire. Cette dernière est associée aux facteurs anti-apoptotiques. En effet son activation par la libération de sa protéine inhibitrice (IKB) déclenche la transcription de gènes anti-apoptotiques dans le noyau. Elle effectue donc un rétrocontrôle négatif de l'apoptose. C'est un sujet de recherche actuellement très étudié dans la mesure où plusieurs centaines de modulateurs de NF-κB sont connus et plus d'un millier de gènes cibles de ce facteur de transcription ont été identifiés.

NF-κB s'associe avec RelB (cyan) pour former un complexe avec l'ADN (orange), enclenchant ainsi la stimulation de la transcription d'un gène.

Structure modifier

NF-κB est un homo- ou hétérodimère formé à partir de cinq sous-unités[1] : p50NF-κB1, p52NF-κB2, p65RelA, RelB et c-Rel. L’hétérodimère p50:p65 constitue la forme classique, la plus étudiée, de NF-κB.

Toutes les sous-unités sont caractérisées par un domaine N-terminal conservé d’environ 300 acides aminés[2], le Rel Homology Domain (RHD), contenant un domaine de liaison à l’ADN, un domaine de dimérisation, un signal de localisation nucléaire et un domaine d'interaction avec la protéine inhibitrice IκB. Les sous-unités RelA, RelB et c-Rel contiennent également un domaine de transactivation, responsable des activités de régulation transcriptionnelle de NF-κB.

Mécanisme d'action modifier

NF-κB est en partie régulée dans le cytoplasme de la cellule par un complexe protéique (IKK) composé des protéines, IKKα, IKKβ et de la protéine NEMO (IKKg). Elle joue un rôle dans la répression ou l'activation des gènes, et est retenue dans le cytoplasme par la protéine inhibitrice IκB-α. La dégradation de IκB-α par phosphorylation et ubiquitination permet la translocation de NF-κB jusqu'au noyau et l'activation de la transcription des gènes cibles.

Voie de signalisation modifier

 
Aperçu des voies de signalisation NF-κB canonique et non canonique. * La signalisation canonique NF-κB est principalement activée par le récepteur des cellules B, le récepteur des cellules T , les récepteurs de type Toll, le récepteur de l'interleukine 1 et le récepteur du facteur de nécrose tumoral. le récepteur des cellules B et le récepteur des cellules T initient une réaction enzymatique en plusieurs étapes qui active le complexe CARMA1/BCL-10/MALT1. Les récepteurs de type Troll, le récepteur de l'interleukine 1 et le récepteur du facteur de nécrose tumoral favorisent principalement l'activation du complexe TAK1/TAB. Le complexe CARMA1/BCL-10/MALT1 activé et le complexe TAK1/TAB phosphorylent le complexe IKKα/IKKβ/NEMO (IKKγ). IKKα et IKKβ phosphorylent IκBα, conduisant à son ubiquitination et à sa dégradation protéasomale ultérieure. Cela entraîne la libération de p50/RelA, qui agit comme un facteur de transcription pour activer la transcription des gènes cibles. La signalisation canonique NF-κB favorise principalement la survie cellulaire et médie les réponses inflammatoires et immunitaires. * Dans la signalisation non canonique NF-κB, CD40, RANK, le lymphotoxin beta receptor et BAFF-R activent NIK, qui phosphoryle davantage IKKα et favorise la dégradation de p100 en p52. La sous-unité p52 se lie ensuite à RelB et subit une translocation nucléaire, favorisant la génération, la survie, la maturation et l'adhésion des lymphocytes.

NF-κB est le pivot des cellules phagocytaires. Il permet de les activer. Il est activé grâce au complexe membranaire CD14-Toll-like receptor au contact d'un PAMP ; par exemple, Toll-like receptor 4 reconnait les LPS bactériens. Le complexe membranaire va en fait permettre la dégradation de IκB qui retient NF-κB dans sa forme inactive. Une fois libéré, il se dirige vers le noyau et permet la transcription de nouveaux gènes.
IκB peut être défini comme étant un séquestreur cytosolique. La séquestration cytosolique de NF-κB par IκB laisse le facteur NF-κB inactif (inhibition). En intra-cytosolique, NF-κB est lié au facteur IκB mais des stimuli externe peuvent permettre la dissociation du complexe NF-κB/IκB. Une autre kinase, IKK, pourra ainsi dans certains cas phosphoryler IκB ; NF-κB se retrouve donc libre et peut ainsi rentrer dans le noyau pour atteindre le génome (translocation nucléaire de NF-κB). De son côté, IκB est voué à la dégradation dans le protéasome 26S à la suite de l'accrochage d'une chaine d'ubiquitine.
Divers stimuli peuvent phosphoryler IκB et ainsi dissocier le complexe NF-κB/IκB. Ce qui, par conséquent, pourra activer NF-κB. Ces stimuli peuvent être physiologiques ou non : ce sont des carcinogènes, des facteurs pro-apoptotiques, des réactifs oxygénés, des cytokines, des facteurs de stress cellulaires (variés), des lipopolysaccharides bactériens, etc.

L'activation du facteur NF-κB peut se faire de deux façons : canonique et non-canonique.

Activation canonique modifier

C'est la voie la plus simple. Un ligand extracellulaire se fixe à un type de récepteur membranaire (par exemple, des récepteurs TLR activés par divers types de ligands), ce qui entraîne un recrutement et une activation du complexe IKK. Pour rappel, IKK comprend IKKa, IKKb et NEMO.
Le complexe IKK activé phosphoryle alors IKB (IKB étant le séquestreur cytosolique de NF-κB) qui sera ensuite envoyé vers le protéasome 26S pour subir une dégradation. NF-κB peut ainsi être transloqué dans le noyau. La voie canonique active le plus souvent les dimères NF-κB comprenant Rel-A, c-Rel, Rel-B et p50.

Activation non canonique modifier

Elle inclut l'activation des complexes p100/RelB et s'observe souvent durant le développement de certains organes lymphoïdes (génération et formation des lymphocytes B et T). Actuellement, on ne connaît que très peu de stimuli permettant de l'activer (lymphotoxine B, B cell activating factor, etc).
La caractéristique de la voie non canonique est l'utilisation d'un complexe IKK ayant deux sous-unités IKKa sans NEMO. Le récepteur activé induira l'activation de la protéine NIK (NF-κB inducing kinase), qui phosphoryle et active le complexe IKKa, qui à son tour phosphoryle p100. Il s'ensuit une libération d'un hétérodimère actif p52/Rel-B. Contrairement au facteur p100, p105 subit un clivage pour donner p50.

Interactions avec les autres voies de signalisation cellulaire modifier

 
Interaction entre la signalisation NF-κB et d’autres voies de signalisation. (1) L'activation de PI3K par le récepteur des lymphocytes B et le récepteur de l'interleukine 7 via la voie cIAP-IKK entraîne la stimulation de NF-κB. La protéine X du virus de l'hépatite B induit la glycolyse aérobie et produit du lactate via la voie NF-κB/hexokinase 2, activant le signal PI3K/AKT ;(2)NF-κB inhibe la signalisation JNK médiée par le facteur de nécrose tumorale;

Les molécules transmettent des signaux de manière intracellulaire ou extracellulaire et agissent comme récepteurs, ligands, protéines kinases ou facteurs de transcription dans les voies de signalisation. Les différentes voies de signalisation constituent un réseau de transduction de signal avec une régulation fine grâce à des interactions mutuelles. La signalisation NF-κB n'est pas isolée dans la régulation de nombreux processus physiologiques et pathologiques dans lesquels elle est impliquée, et il peut y avoir une régulation directe ou indirecte avec d'autres molécules, ce qui déclenche par conséquent des interactions avec d'autres voies de signalisation. Les voies de signalisation classiques incluent la signalisation NF-κB, la voie de signalisation PI3K/AKT, la voie de signalisation MAPK/ERK, la voie de signalisation JAK-STAT, la facteur de croissance transformant, la voie de signalisation Wnt, la voie de signalisation Notch et la voie de signalisation Hedgehog. Ces voies de signalisation peuvent interagir avec la signalisation NF-κB dans l'implication de processus biologiques tels que la prolifération cellulaire, la différenciation, la survie, la mort, le développement, l'immunité, l'inflammation et la cancérogène. De plus, les membres de la famille des récepteurs de type Toll participent également à la signalisation NF-κB en reconnaissant les composants antigéniques des micro-organismes.

Voie de signalisation PI3K/AKT modifier

 
Voie de signalisation PI3K/AKT .

La voie de signalisation phosphatidylinositol 3-kinase (PIK3) /protéine kinase B (AKT1) ou PI3K/AKT est une voie de signalisation cellulaire crucialet impliquée dans la régulation de plusieurs activités biologiques : le métabolisme cellulaire, la prolifération, la cancérogenèse, l'immunité , l'angiogenèse et de l'homéostasie cardiovasculaire [3],[4]. Les signaux provenant des facteurs de croissance, des cytokines et des ligands des récepteurs membranaires de la tyrosine kinase au récepteur couplé aux protéines G favorisent la production catalysée par la phosphatidylinositol 3-kinase de phosphatidylinositol trisphosphate , et le phosphatidylinositol trisphosphate est le deuxième messager qui active la protéine kinase B [4],[5]. La sous-unité catalytique alpha du phosphatidylinositol-4,5-bisphosphate 3-kinase code pour la sous-unité catalytique p110α de la phosphatidylinositol-4,5-bisphosphate 3-kinase, et sa mutation est l’une des altérations somatiques les plus courantes dans les cancers [6].

L'interaction entre la signalisation NF-κB et la signalisation PI3K/AKT dans le lymphome diffus à grandes cellules B est un phénomène important. La prolifération et la survie des cellules activées du lymphome diffus à grandes cellules B nécessitent une signalisation active du récepteur des cellules B, et l'activation de la signalisation NF-κB est détectée dans environ 10 % des cellules activées. La cascade de signalisation NF-κB a été suggérée comme cible potentielle pour le traitement du lymphome diffus à grandes cellules B [7],[8]. Des découvertes récentes ont révélé que la phosphoinositide 3-kinase active la signalisation NF-κB et le copanlisib, un inhibiteur de la phosphoinositide 3-kinase peut bloquer efficacement la double signalisation PI3K/AKT - NF-κB dans les cellules activées du lymphome diffus à grandes cellules B , conduisant à une régression tumorale [9]. L'inhibition du phosphoinositide 3-kinase dans le lymphome diffus à grandes cellules B s'est également avérée diminuer l'activité de NF-κB [10]. L'inhibition du phosphatidylinositol 3-kinase réduit l'activité de la protéine kinase B dans le myélome multiple de manière dose-dépendante [11].

Un autre cas exemplaire est l'athérosclérose. L'interleukine 7, essentielle au développement et à l'équilibre des lymphocytes T, active la signalisation NF-κB via la voie PI3K/AKT, régule positivement l'expression de la protéine chimiotactique 1 des monocytes et de la protéine d'adhésion cellulaire dans les macrophages et dans les cellules endothéliales aortiques et joue un rôle actif dans l'athérosclérose [12]. La sécrétion accrue du facteur pro-inflammatoire galectine-3 dans l'athérosclérose active la voie PI3K/AKT et inhibe l'autophagie lors de la liaison au CD98, alors que l'inhibition de la galectine-3 réduit l’activité de la voie NF-κB, supprime l’inflammation et améliore l’autophagie [13].

La signalisation NF-κB peut également interagir avec la signalisation PI3K/AKT via des voies métaboliques. Dans le carcinome hépatocellulaire lié au virus de l'hépatite B , la protéine X de l'hépatite B (HBx) induit une glycolyse aérobie et produit une grande quantité d'acide lactique via la signalisation NF-κB/hexokinase 2 qui active davantage PI3K-AKT et améliore la capacité de prolifération maligne des cellules [14]. Le sous-type 2 du récepteur de la somatostatine inhibe la signalisation PI3K activée par la GTPase KRAS favorisant la libération du ligand de chimiokine CXC 16 et de l'interleukine 6 et conduisant finalement à la progression de l'adénocarcinome canalaire pancréatique [15]. Le système de signalisation PI3K/AKT/NF-ΚB facilite également la transition épithélio-mésenchymateuse [16].

Voie de signalisation MAPK/ERK modifier

 
Voie de signalisation MAPK/ERK

La protéine kinase activée par des agents mitogènes (MAPK) appartient à la famille des sérine/thréonine kinase et joue un rôle important dans la prolifération, la différenciation, le développement, la transformation, les réponses inflammatoires et l'apoptose en transmettant, en amplifiant et en intégrant les signaux de un large spectre de stimuli. La signalisation MAPK est une cascade enzymatique conservée qui assure la transduction du signal de la surface cellulaire au noyau via des événements de phosphorylation. Cette voie implique trois enzymes clés : la MAPK déjà citée , la MAPK kinase ou MAPKK et la MAPKK kinase ou MAPKKK. La MAPK est responsable de la phosphorylation des protéines cibles dans le cytoplasme ou le noyau. Les MAPK dans les cellules de mammifères comprennent principalement la protéine kinase régulée extracellulaire , la MAPK p38, la c-Jun N-terminal kinases (JNK) et la protéine kinase 5 régulée extracellulaire . L’interaction de la signalisation NF-κB avec la signalisation MAPK est principalement centrée sur la signalisation JNK. TAK1 sert de kinase en amont pour la signalisation NF-κB et la signalisation JNK [17]. La voie JNK régule la progression du cycle cellulaire par le biais de multiples mécanismes. JNK active la voie de transcription Jun et le facteur de transcription AP-1 pour exercer des effets pro-oncogènes, tout en induisant simultanément l'apoptose [18]. Les réponses cellulaires présentent une variabilité basée sur la nature du stimulus, l'étendue de l'activation de JNK et la durée de la réponse [18]. Des études portant sur l'interaction de la signalisation NF-κB avec la signalisation JNK ont révélé que bien que la signalisation JNK régule la mort ou la survie cellulaire, le destin ultime de la cellule est déterminé par NF-κB, et l'activation de la signalisation NF-κB est capable d'inhiber la pro-apoptose induite par les caspases, la JNK et les [dérivés réactifs de l'oxygène [19]. NF-κB a également été observé pour bloquer l'apoptose induite par le facteur de nécrose tumorale via la régulation négative de JNK et de c-Jun/AP-1 dans les hépatocytes de rat [20] . Au cours d'une insuffisance hépatique aiguë, le récepteur de type 1 de l'interleukine 1 est stimulé par l'interleukine 1 et active la signalisation NF-kB qui favorise la régulation transcriptionnelle positive des gènes liés à l'inflammation et le recrutement de cellules immunitaires, tandis que le NF-κB inhibe la signalisation JNK activée par le facteur de nécrose tumorale et empêche l'apoptose médiée par la caspase 3, qui amplifie encore les réponses inflammatoires et exacerbe les lésions hépatiques [21].

Voie de signalisation JAK-STAT modifier

Régulation du facteur IκB et de l'action de NF-κB modifier

Les IKK sont des IκB-kinases. La régulation du facteur IκB se fait essentiellement par des phosphorylations sur les résidus Ser32 et Ser36, grâce aux IKK. IKK est fait de l'association d'un hétérodimère NEMO (constitué de IKKa et IKKb) avec une sous-unité IKKy.
Les IKK sont activés par de nombreux couples ligand-récepteurs, variés également. Parmi eux, on peut citer :

  • Le TNF-α avec le TNF-Receptor : l'activation du TNF-Receptor pourrait permettre l'activation de NF-κB qui dans ce cas stimule le facteur mTOR et inhibe la production de réactifs oxygénés cellulaires, ce qui serait à la base d'un blocage des processus d'autophagie, notamment dans les cellules cancéreuses[22].
  • L'IL-1β avec les lipopolysaccharides bactériens ; en effet, l'IL-1β peut se fixer sur son IL-1βR du macrophage (récepteur de cette cytokine inflammatoire) qui stimulera IKK. Cela engendre l'activation de NF-κB (dimère p50/p65) qui stimulera la transcription du gène de la NOS inductible. Celle-ci sera ensuite sécrétée par le macrophage afin d'aller bloquer le métabolisme mitochondrial des bactéries, ce qui engendre la mort de la bactérie. C'est un processus très utilisé lors de l'inflammation. L'interaction du lipopolysaccharide bactérien ou du lipopolysaccharide binding protein (LBP) avec le récepteur CD14 (en surface du macrophage) peut enclencher des voies de signalisation très similaires.
  • Le TLR4 (CD 284), récepteur pouvant être activé par les lipopolysaccharides de bactéries Gram -, ce qui activera la voie MyD88 en intracytosolique afin de stimuler une activation indirecte (pouvant être Akt-dépendante) du facteur NF-κB.
  • L'hypoxie est capable, selon les cas, de stimuler la production de réactifs oxygénés qui peuvent stimuler l'activation de NF-κB et de facteurs HIF-1α et ensemble, stimuleront l'autophagie.
  • La kinase Akt concourt indirectement à l'activation de NF-κB : Akt peut en effet activer le complexe IKK par phosphorylation, qui lui-même pourra phosphoryler IKB, ce qui activera le facteur NF-κB.
  • Divers antigènes activant les B-cell Receptor (BCR) ou T-cell Receptor (TCR) : par exemple, une infection bactérienne peut stimuler la production d'Interleukine 2 en activant la voie incluant le complexe NFAT/AP-1/NF-κB. NFAT est activé par le Ca2+, AP-1 est activé par des MAP kinases et la protéine kinase C (PKC) activera NF-κB. L'association des trois facteurs pourra se fixer sur le promoteur du gène de l'interleukine 2 et ainsi stimuler sa transcription. La sécrétion de l'IL-2 par les cellules T est une caractéristique majeure de la réponse immune adaptative.
  • Le signal costimulateur des lymphocytes T permet également d'accroître le taux de NF-κB libre. En effet l'activation du CD28 (de la cellule T) par les CD80 et CD86 (aussi connus sous le nom de B7.1 ET B7.2) de la CPA permet l'augmentation de la production des facteurs AP-1 et NF-κB, triplant ainsi la transcription de l'ARNm de l'IL-2[23].

Physiopathologie modifier

  • Son activation exagérée (lors de la présence de bactéries dans le sang par exemple) peut provoquer un choc septique.
  • NF-κB est connu pour être un des multiples régulateurs de plusieurs gènes codant des protéines de l'inflammation ; ce facteur dispose ainsi d'une fenêtre de temps d'activation (temps passé dans le noyau) beaucoup plus long que la normale dans diverses pathologies inflammatoires comme : arthrite, maladies inflammatoires de l'intestin, asthme, athérosclérose, etc[24].
  • Il a été montré dans de très nombreuses publications l'implication du facteur NF-κB dans la cancérogenèse et les processus de tumorisation de certaines cellules[25],[26].

La voie de signalisation NF-kB dans les pathologies humaines modifier

Traitements ciblant la voie de signalisation NF-kB modifier

 
Utilisation des inhibiteurs de NF-κB sont largement utilisés dans dans les maladies humaines. Ces médicaments inhibent la voie NF-κB par différents mécanismes. Les anti-inflammatoires non stéroïdiens inhibent sélectivement le complexe IKK pour supprimer l'activation de NF-κB.

Inhibiteurs du complexe IKK modifier

Aspirine modifier

L'aspirine, un anti-inflammatoire non stéroïdien , est bien connue pour son action inhibant la cyclooxygénase. La découverte , en 1994, du pouvoir inhibiteur de l'aspirine sur la transcription dépendante de NF-κB confirma le rôle important de la signalisation NF-κB dans l'inflammation et l'infection [27]. La recherche suggère que les propriétés anti-inflammatoires de l'aspirine sont en partie attribuées à son inhibition spécifique de l'IKKβ [28].

Il existe des preuves substantielles indiquent que l'aspirine et les anti-inflammatoires non stéroïdien apparentés possèdent une activité antitumorale potentielle et des effets préventifs du cancer, conduisant à un intérêt accru pour l'utilisation de l'aspirine pour le traitement du cancer. L'aspirine réduit la migration, l'invasion et les métastases des cellules d'ostéosarcome grâce à la modulation de la voie NF-κB [29]. L'aspirine libérant du sulfure d'hydrogène, un dérivé de l'aspirine, inhibe la croissance des cellules cancéreuses du sein en régulant négativement la voie NF-κB, induisant un arrêt du cycle cellulaire et favorisant l'apoptose. Le sulfure d'hydrogène] affecte également l’activité de la thiorédoxine réductase et augmente les niveaux de [dérivé réactif de l'oxygène]] [30]. L’aspirine induit l’apoptose des cellules cancéreuses colorectales humaines en inhibant l’activité du NF-κB, ce qui en fait un agent thérapeutique potentiel pour le cancer du côlon [31].

Salicylate de sodium modifier

Le découverte de l'inhibition de la voie de signalisation NF-kB par le salicylate de sodium fut faite en 1995 [32]. Le salicylate de sodium est connu comme inhibiteur de la COX-2 et ce médicament peut empêcher la dissociation du NF-κB du complexe NF-κB/IκB, empêchant ainsi la translocation du NF-κB du cytoplasme vers le noyau et inhibant la transcription de la COX-2 [33].487. De plus, le salicylate de sodium induit le passage d'un phénotype prolifératif à un phénotype apoptotique dans les cellules leucémiques humaines en inhibant la réponse NF-κB et en rétablissant l'apoptose induite par le facteur de nécrose tumoral [34].

Sulfasalazine modifier

La sulfasalazine est principalement utilisée comme antibiotique sulfamide. Lorsqu’il est partiellement absorbé, il est dégradé par le microbiote intestinal en acide 5-aminosalicylique et sulfapyridine . L'acide 5-aminosalicylique avec le tissu conjonctif de la paroi intestinale exercent des effets antimicrobiens, anti-inflammatoires et immunosuppresseurs. Elle inhibe la synthèse des prostaglandines et d'autres médiateurs inflammatoires comme les leucotriènes [35]. La sulfasalazine est un inhibiteur connu du NF-κB qui peut inhiber l'expression du récepteur de type Toll 4, de MyD88 et deNF-κB p65 induite par l' acide trinitro-benzène-sulfonique [36]. La sulfasalazine peut favoriser l'apoptose dans les cellules de glioblastome en inhibant la signalisation NF-κB [37]. La voie de signalisation interleukine 1-NFkB/CREB-Wnt a également été identifiée comme un nouveau mécanisme favorisant la colonisation des cellules souches du cancer du sein dans le tissu osseux. Cibler cette voie avec des médicaments comme la sulfasalazine peut prévenir les métastases osseuses in vivo [38].

Dexaméthasone modifier

La dexaméthasone est un glucocorticoïde dont elle a tous les effets thérapeutiques. L'inhibition de l'activation de NF-κB est l'un des mécanismes possibles par lesquels la dexaméthasone exerce ses thérapeutiques. Deux mécanismes sont proposés pour cette inhibition : Les récepteurs glucocorticoïdes activés interagissent directement avec la sous-unité RelA de NF-κB dans le noyau cellulaire conduisant à l'inhibition de sa fonction ou les récepteurs glucocorticoïdes activés améliorent la transcription de IκB empêchant la translocation nucléaire de NF-κB et sa liaison à l'ADN [39]. Ces mécanismes constituent une base pour l'application thérapeutique de la dexaméthasone dans les maladies impliquant une dérégulation de NF-κB. La pancréatite aiguë pourrait bénéficier de ce traitement en inhibant l'expression de la protéine p65. Dans le lichen plan buccal , où l'axe TLR4-NF-κB-p65 joue un rôle crucial, la dexaméthasone protège efficacement contre les dommages aux cellules épidermiques en régulant négativement l'expression du récepteur de type Toll 4 et en régulant négativement la voie de signalisation NF-κB dans les kératinocytes [40].

Thalidomide modifier

La thalidomide, initialement développée comme médicament contre la lèpre, s'est avérée avoir divers effets pharmacologiques. Son mécanisme d'action implique l'immunosuppression, la modulation immunitaire et l'inhibition de la chimiotaxie des neutrophiles. Plusieurs études ont indiqué que la thalidomide produit ces effets en inhibant l’activation de NF-κB [41] [42].

En termes de traitement inflammatoire, la thalidomide a démontré sa capacité à améliorer l’inflammation cutanée de type rosacée en inhibant l’activation du NF-κB dans les kératinocytes [43]. La thalidomide pourrait avoir un potentiel thérapeutique dans le traitement des tumeurs. Il peut inhiber l'expression d'ICAM-1 induite par le facteur de nécrose tumorale α en supprimant le promoteur ICAM-1 se liant à NF-κB, conduisant à l'inhibition de la prolifération des cellules cancéreuses du poumon [44].

Le mécanisme à l'origine de la malformation des membres induite par la thalidomide est également lié à NF-κB. La recherche a révélé que des changements dans le microenvironnement redox, déclenchés par la génération de radicaux libres à partir de la thalidomide, conduisent à la suppression de l'expression génique médiée par NF-κB, responsable de la phocomélie [45].

Notes et références modifier

  1. Pereira et Oakley 2008
  2. Perkins et Gilmore 2006
  3. (en) Qing Guo, Yizi Jin, Xinyu Chen et Xiaomin Ye, « NF-κB in biology and targeted therapy: new insights and translational implications », Signal Transduction and Targeted Therapy, vol. 9, no 1,‎ , p. 1–37 (ISSN 2059-3635, PMID 38433280, PMCID PMC10910037, DOI 10.1038/s41392-024-01757-9, lire en ligne, consulté le )
  4. a et b (en) Bart Vanhaesebroeck, Julie Guillermet-Guibert, Mariona Graupera et Benoit Bilanges, « The emerging mechanisms of isoform-specific PI3K signalling », Nature Reviews Molecular Cell Biology, vol. 11, no 5,‎ , p. 329–341 (ISSN 1471-0080, DOI 10.1038/nrm2882, lire en ligne, consulté le )
  5. (en) Lauren M. Thorpe, Haluk Yuzugullu et Jean J. Zhao, « PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting », Nature Reviews Cancer, vol. 15, no 1,‎ , p. 7–24 (ISSN 1474-1768, PMID 25533673, PMCID PMC4384662, DOI 10.1038/nrc3860, lire en ligne, consulté le )
  6. Ariella B. Hanker, Virginia Kaklamani, Carlos L. Arteaga; Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discov 1 April 2019; 9 (4): 482–491. https://doi.org/10.1158/2159-8290.CD-18-1175
  7. (en) R. Eric Davis, Vu N. Ngo, Georg Lenz et Pavel Tolar, « Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma », Nature, vol. 463, no 7277,‎ , p. 88–92 (ISSN 1476-4687, PMID 20054396, PMCID PMC2845535, DOI 10.1038/nature08638, lire en ligne, consulté le )
  8. Wendan Xu, Philipp Berning, Georg Lenz; Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 2021; 138 (13): 1110–1119. doi: https://doi.org/10.1182/blood.2020006784
  9. Juliane Paul, Maurice Soujon, Antje M. Wengner et Sabine Zitzmann-Kolbe, « Simultaneous Inhibition of PI3Kδ and PI3Kα Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-κB and AKT », Cancer Cell, vol. 31, no 1,‎ , p. 64–78 (ISSN 1535-6108, DOI 10.1016/j.ccell.2016.12.003, lire en ligne, consulté le )
  10. (en) Wendan Xu, Philipp Berning, Tabea Erdmann et Michael Grau, « mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma », Leukemia, vol. 37, no 1,‎ , p. 178–189 (ISSN 1476-5551, PMID 36352190, PMCID PMC9883168, DOI 10.1038/s41375-022-01749-0, lire en ligne, consulté le )
  11. Seiichi Okabe, Yuko Tanaka et Akihiko Gotoh, « Targeting phosphoinositide 3-kinases and histone deacetylases in multiple myeloma », Experimental Hematology & Oncology, vol. 10, no 1,‎ , p. 19 (ISSN 2162-3619, PMID 33663586, PMCID PMC7934550, DOI 10.1186/s40164-021-00213-6, lire en ligne, consulté le )
  12. (en) Rongying Li, Antoni Paul, Kerry W.S. Ko et Michael Sheldon, « Interleukin-7 induces recruitment of monocytes/macrophages to endothelium », European Heart Journal, vol. 33, no 24,‎ , p. 3114–3123 (ISSN 0195-668X et 1522-9645, PMID 21804111, PMCID PMC3598429, DOI 10.1093/eurheartj/ehr245, lire en ligne, consulté le )
  13. (en) Zitong Wang, Ziyu Gao, Yinghong Zheng et Jiayuan Kou, « Melatonin inhibits atherosclerosis progression via galectin‐3 downregulation to enhance autophagy and inhibit inflammation », Journal of Pineal Research, vol. 74, no 3,‎ (ISSN 0742-3098 et 1600-079X, DOI 10.1111/jpi.12855, lire en ligne, consulté le )
  14. Lingjun Chen, Xianyi Lin, Yiming Lei et Xuan Xu, « Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling », Journal of Experimental & Clinical Cancer Research, vol. 41, no 1,‎ , p. 329 (ISSN 1756-9966, PMID 36411480, PMCID PMC9677649, DOI 10.1186/s13046-022-02531-x, lire en ligne, consulté le )
  15. Mounira Chalabi-Dchar, Stéphanie Cassant-Sourdy, Camille Duluc et Marjorie Fanjul, « Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16 », Gastroenterology, vol. 148, no 7,‎ , p. 1452–1465 (ISSN 0016-5085, DOI 10.1053/j.gastro.2015.02.009, lire en ligne, consulté le )
  16. Chun-Yu Lin, Pei-Hsun Tsai, Chithan C. Kandaswami et Geen-Dong Chang, « Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells », Molecular Cancer, vol. 10, no 1,‎ , p. 87 (ISSN 1476-4598, PMID 21777419, PMCID PMC3150327, DOI 10.1186/1476-4598-10-87, lire en ligne, consulté le )
  17. (en) Alain Israël, « The IKK Complex, a Central Regulator of NF-κB Activation », Cold Spring Harbor Perspectives in Biology,‎ , a000158 (ISSN 1943-0264, PMID 20300203, DOI 10.1101/cshperspect.a000158, lire en ligne, consulté le )
  18. a et b (en) Erwin F. Wagner et Ángel R. Nebreda, « Signal integration by JNK and p38 MAPK pathways in cancer development », Nature Reviews Cancer, vol. 9, no 8,‎ , p. 537–549 (ISSN 1474-1768, DOI 10.1038/nrc2694, lire en ligne, consulté le )
  19. (en) H. Nakano, A. Nakajima, S. Sakon-Komazawa et J.-H. Piao, « Reactive oxygen species mediate crosstalk between NF-κB and JNK », Cell Death & Differentiation, vol. 13, no 5,‎ , p. 730–737 (ISSN 1476-5403, DOI 10.1038/sj.cdd.4401830, lire en ligne, consulté le )
  20. (en) Hailing Liu, Chau R. Lo et Mark J. Czaja, « NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun: NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun », Hepatology, vol. 35, no 4,‎ , p. 772–778 (DOI 10.1053/jhep.2002.32534, lire en ligne, consulté le )
  21. Nadine Gehrke, Nadine Hövelmeyer, Ari Waisman et Beate K. Straub, « Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation », Journal of Hepatology, vol. 68, no 5,‎ , p. 986–995 (ISSN 0168-8278, DOI 10.1016/j.jhep.2018.01.008, lire en ligne, consulté le )
  22. Autophagy and NF-κB signalling pathways in cancer cells
  23. Immunobiologie, Éditions De Boeck, 2009 - page 345.
  24. ^ Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M (April 2004). "Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis". Proc. Natl. Acad. Sci. U.S.A. 101 (15): 5634–9. doi:10.1073/pnas.0401060101. PMC 397455. PMID 15064395
  25. Hoesel, Bastian; Schmid, Johannes A.. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 2013 12:86
  26. (en) N. Perkins et T. Gilmore, « Good cop, bad cop: the different faces of NF-kappaB », Cell Death Differ., vol. 13, no 5,‎ , p. 759–772 (PMID 16410803, DOI 10.1038/sj.cdd.4401838)
  27. (en) Elizabeth Kopp et Sankar Ghosh, « Inhibition of NF-κB by Sodium Salicylate and Aspirin », Science, vol. 265, no 5174,‎ , p. 956–959 (ISSN 0036-8075 et 1095-9203, DOI 10.1126/science.8052854, lire en ligne, consulté le )
  28. (en) Min-Jean Yin, Yumi Yamamoto et Richard B. Gaynor, « The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β », Nature, vol. 396, no 6706,‎ , p. 77–80 (ISSN 1476-4687, DOI 10.1038/23948, lire en ligne, consulté le )
  29. Dan Liao, Li Zhong, Tingmei Duan et Ru-Hua Zhang, « Aspirin Suppresses the Growth and Metastasis of Osteosarcoma through the NF-κB Pathway », Clinical Cancer Research, vol. 21, no 23,‎ , p. 5349–5359 (ISSN 1078-0432 et 1557-3265, DOI 10.1158/1078-0432.ccr-15-0198, lire en ligne, consulté le )
  30. Mitali Chattopadhyay, Ravinder Kodela, Niharika Nath et Arpine Barsegian, « Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo », Biochemical Pharmacology, vol. 83, no 6,‎ , p. 723–732 (ISSN 0006-2952, DOI 10.1016/j.bcp.2011.12.019, lire en ligne, consulté le )
  31. (en) Jianghua Shao, Toshiyoshi Fujiwara, Yoshihiko Kadowaki et Takuya Fukazawa, « Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells », Oncogene, vol. 19, no 6,‎ , p. 726–736 (ISSN 1476-5594, DOI 10.1038/sj.onc.1203383, lire en ligne, consulté le )
  32. (en) Betsy Frantz et Edward A. O'Neill, « The Effect of Sodium Salicylate and Aspirin on NF-κB », Science, vol. 270, no 5244,‎ , p. 2017–2018 (ISSN 0036-8075 et 1095-9203, DOI 10.1126/science.270.5244.2017, lire en ligne, consulté le )
  33. Phuong Oanh T. Tran, Catherine E. Gleason, R. Paul Robertson; Inhibition of Interleukin-1β-Induced COX-2 and EP3 Gene Expression by Sodium Salicylate Enhances Pancreatic Islet β-Cell Function . Diabetes 1 June 2002; 51 (6): 1772–1778. https://doi.org/10.2337/diabetes.51.6.1772
  34. (en) Colin Rae, Susana Langa, Steven J. Tucker et David J. MacEwan, « Elevated NF-κB responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis », Proceedings of the National Academy of Sciences, vol. 104, no 31,‎ , p. 12790–12795 (ISSN 0027-8424 et 1091-6490, PMID 17646662, PMCID PMC1937545, DOI 10.1073/pnas.0701437104, lire en ligne, consulté le )
  35. (en) Peter Goldman et Mark A. Peppercorn, « Sulfasalazine », New England Journal of Medicine, vol. 293, no 1,‎ , p. 20–23 (ISSN 0028-4793 et 1533-4406, DOI 10.1056/NEJM197507032930105, lire en ligne, consulté le )
  36. (en) Amir Rashidian, Ahad Muhammadnejad, Ahmad-Reza Dehpour et Shahram Ejtemai Mehr, « Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway », Inflammopharmacology, vol. 24, no 2,‎ , p. 109–118 (ISSN 1568-5608, DOI 10.1007/s10787-016-0263-6, lire en ligne, consulté le )
  37. Jing Su, Fei Liu, Meihui Xia et Ye Xu, « p62 participates in the inhibition of NF-κB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells », Oncology Reports, vol. 34, no 1,‎ , p. 235–243 (ISSN 1021-335X, DOI 10.3892/or.2015.3944, lire en ligne, consulté le )
  38. (en) Rachel Eyre, Denis G. Alférez, Angélica Santiago-Gómez et Kath Spence, « Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling », Nature Communications, vol. 10, no 1,‎ , p. 5016 (ISSN 2041-1723, PMID 31676788, PMCID PMC6825219, DOI 10.1038/s41467-019-12807-0, lire en ligne, consulté le )
  39. Steven Timmermans, Jolien Souffriau et Claude Libert, « A General Introduction to Glucocorticoid Biology », Frontiers in Immunology, vol. 10,‎ (ISSN 1664-3224, PMID 31333672, PMCID PMC6621919, DOI 10.3389/fimmu.2019.01545, lire en ligne, consulté le )
  40. Yana Ge, Ye Xu, Wenjing Sun et Zhaozhao Man, « The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-κB signaling pathway activation in oral lichen planus », Gene, vol. 508, no 2,‎ , p. 157–164 (ISSN 0378-1119, DOI 10.1016/j.gene.2012.07.045, lire en ligne, consulté le )
  41. Jayne A. Keifer, Denis C. Guttridge, Brian P. Ashburner et Albert S. Jr.Baldwin, « Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity », Journal of Biological Chemistry, vol. 276, no 25,‎ , p. 22382–22387 (ISSN 0021-9258, DOI 10.1074/jbc.m100938200, lire en ligne, consulté le )
  42. Jin, S. H., Kim, T. I., Han, D. S., Shin, S. K. & Kim, W. H. Thalidomide suppresses the interleukin 1beta-induced NFkappaB signaling pathway in colon cancer cells. Ann. N. Y Acad. Sci. 973, 414–418 (2002).
  43. Mengting Chen, Hongfu Xie, Zhaohui Chen et San Xu, « Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-κB activation in keratinocytes », Biomedicine & Pharmacotherapy, vol. 116,‎ , p. 109011 (ISSN 0753-3322, DOI 10.1016/j.biopha.2019.109011, lire en ligne, consulté le )
  44. Yi-Chu Lin, Chia-Tung Shun, Ming-Shiang Wu et Ching-Chow Chen, « A Novel Anticancer Effect of Thalidomide: Inhibition of Intercellular Adhesion Molecule-1–Mediated Cell Invasion and Metastasis through Suppression of Nuclear Factor-κB », Clinical Cancer Research, vol. 12, no 23,‎ , p. 7165–7173 (ISSN 1078-0432 et 1557-3265, DOI 10.1158/1078-0432.ccr-06-1393, lire en ligne, consulté le )
  45. (en) Jason M. Hansen et Craig Harris, « A Novel Hypothesis for Thalidomide-Induced Limb Teratogenesis: Redox Misregulation of the NF-κB Pathway », Antioxidants & Redox Signaling, vol. 6, no 1,‎ , p. 1–14 (ISSN 1523-0864 et 1557-7716, DOI 10.1089/152308604771978291, lire en ligne, consulté le )

Voir aussi modifier

Bibliographie modifier

  • (en) Silvia Pereira et Fiona Oakley, « Nuclear factor-kappaB1: regulation and function », Int. J. Biochem. Cell Biol., vol. 40, no 8,‎ , p. 1425–1430 (PMID 17693123, DOI 10.1016/j.biocel.2007.05.004)